
FLAM ®

FRANKENSTEIN-LIMES-ACCESS-METHOD

(MVS®)

USER MANUAL

— Edition February 2015 Version 4.5 —

© Copyright 1989-2015 by limes datentechnik® gmbh  Louisenstraße 21  D-61348 Bad Homburg
Telephone ++49 6172 / 5919-0  Telefax ++49 6172 / 5919-39

http://www.flam.de  http://www.limes-datentechnik.de

2

User Manual FLAM® V4.5 (MVS)

© Copyright 2015 by limes datentechnik® gmbh

All rights reserved. The reproduction, transmission or use
of this document is not permitted without express written
authority.

Offender will be liable for damages.

Delivery subject to availability, right of technical
modifications reserved.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Preface

Preface

This Manual describes data compression and
decompression with the Frankenstein-Limes-Access-
Method. This method is implemented by the product
FLAM.

FLAM compresses structurally related data using the
algorithm upon which the Frankenstein-Limes-Access-
Method is based. This method has been patented by the
German, U.S. and European Patent Offices, registered by
the inventor at the 19.7.1985.

FLAM®, FLAMFILE®, FLIES®, FLUC® and limes
datentechnik® are registered trademarks.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Preface

This manual consists of the following chapters:

Introduction This chapter explains FLAM's basic concepts and
terminology and suggests areas for its use.

Functions This chapter gives a general overview of the available
functions.

Interfaces This chapter contains the formal descriptions of all
parameters and program interfaces.

Method of Operation This chapter explains internal operative details to allow for
optimal utilization of FLAM.

Application examples This chapter illustrates by practical examples how to
achieve satisfactory results quickly. It also contains hints
and tips for FLAM users.

Installation This chapter is the guide for installing and customizing
FLAM.

Technical Data This chapter describes the system environment required
for FLAM operation. It also summerizes product features
and characteristics.

Messages This chapter contains a complete list of FLAM messages,
their meanings, and required operator actions.

FLAM user interface TSO/ISPF users are supported with a user interface
consisting of panels and procedures. This chapter
describes control flow and principles of operation.

Appendix The appendix includes the standard code conversion
tables.

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Preface

What knowledge is required?

You should be quite familiar with the MVS operating
system, particularly with its command language.

This information is described in the following publications:

 JCL

 DATA Administration Guide

 VSAM Access Method Services

How to navigate through this manual:

All updates in their edition are summarized in the
Documentation updates.

limes datentechnik® gmbh

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Preface

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Documentation updates

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 10 - FLAM V4.5

Changes in FLAM manual V4.4 from August 2012 by this
supplement from February 2015 (FLAM V4.5).

FLAM V4.5 is a true superset of all previous versions,
so any usage that has been working with earlier
FLAM versions remains compatible with FLAM V4.5.

FLAM V4.5 is now part of the FLAM-, FLIES- and FLUC-
utilities V5.x.

To distinguish this version from the new capabilties of the
new utilities we call it FLAM4.

New license In the past a license load modul had been created by
the customer during installation of FLAM. Now the
license module is delivered separately from the
installation packet.

New major versions require new license modules.

Update management Updates are supplied at least every month to
download from our homepage. All registered users
will receive an information, when a major version is
released.

Translation Many translation table source- and load modules are
supplied to download from our homepage:

http://www.flam.de/en/download/addons/Flam4-
TranslationTables/zSeries/zos/

z/OS 1.13 All modules are assembled in z/OS 1.13.

There is no garanty using FLAM on lower z/OS
versions but FLAM is still be useable on higher
versions (i.e. V2.1).

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 9 - FLAM V4.4

Changes in FLAM manual V4.3 from October 2009 by this
supplement from August 2012 (FLAM V4.4).

FLAM V4.4 is a true superset of all previous versions,
so any usage that has been working with earlier
FLAM versions remains compatible with FLAM V4.4.

Large Files FLAM allocates large files (>65.535 TRKS) on
decompression, if the original file has been so large.

New Parameter New parameter for disposition of outputfiles are
introduced. Disposition for status, normal ending, and
abnormal ending can be used (see DISP parameter in the
MVS JCL manual).

Record Interface New functions are implemented in the record interface.

 DDNAME No DD-name in FLMOPN but a filename in FLMOPD now
produce an automatic creation of a DD-name by FLAM.

 FLMSET DISP-parameter are now accepted to allocate a new
FLAMFILE

FLAM User Interface The interface has been enhanced

 FLCKV Analyses a VSAM-KSDS-FLAMFILE for propper settings
to get the best performance when accessing the file.

Protocol Two messages are changed for a better log.

FLM0400, FLM0450 Both messages display the starting date and time of
FLAM.

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 8 - FLAM V4.3

Changes in FLAM manual V4.2 from November 2007 by
this supplement from October 2009 (FLAM V4.3).

FLAM V4.3 is a true superset of all previous versions,
so any usage that has been working with earlier
FLAM versions remains compatible with FLAM V4.3.

MODE=ADC as default Compression mode ADC is introduced as default value.
That means, that when the MODE parameter is omitted
MODE=ADC ist used.

FLAM has been able to decompress this mode on all
other platforms for about 10 years, so there should be
no compatibility problem at all.

Remember: It is not allowed to mix MODE=VR8 and
MODE=ADC (as with CX7 and CX8/VR8).
Take care when using DISP=MOD in the DD-state-
ment of existing JCL and without the FLAM MODE-
parameter. Then enter MODE=VR8 (the old default
value) as FLAM parameter or start with a new file.

HW-AES FLAM uses CPACF hardware for AES encryption, when
present.

This is default for z10 systems and newer. FLAM
automatically checks the availability, so no parameter
other than CRYPTOMODE=AES is needed.

Encryption by hardware increases perfomance and
decreases cputime. Up to 30 % may be saved. It depends
on the compression ratio, less compression increases
time savings. Particularly using MODE=NDC, packing files
without compression.

Wildcard Syntax Wildcard syntax may be used in file lists for compression,
not only in the FLAMIN parameter.

This improves better assistance for compressing in Group-
FLAMFILEs!

New Utilities New utility programs for easier use of FLAM and
FLAMFILEs are released.

FLAMCKV Analyses a VSAM-KSDS FLAMFILE. The protocol allows
checking for correct attributes of the cataloged file.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Particularly performance oriented parameter of the VSAM-
KSDS file are important for a fast key access.

FLAMCTAB Creates a translation table load module from a 256 byte
input stream. These bytes are read from a file of arbitrarily
format or record size and stored into a load library.

With this program it is no longer neccessary to assemble
and bind a module from an assembler source.

FLAMDIR Lists a short summary of the table of contens of a FLAM-
FILE like ISPF 3.4 or FLTOC of FLAM panels (or option ‘i’
in the FLAM start panel).

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 7 - FLAM V4.2

Changes in manual FLAM V4.1 from April 2005 by this
supplement from November 2007 (FLAM V4.2).

FLAM V4.2 is a true superset of all previous versions,
so any usage that has been working with earlier
FLAM versions remains compatible with FLAM V4.2.

This revision primarily improves the ease of use of
FLAM.

New Parameters New parameters (DATACLAS, MGMTCLAS, SPACE,
STORCLAS, VOLUME, UNIT, and ODATCLAS, OMGMT-
CLAS, OSPACE, OSTORCLAS, OVOLUME, OUNIT) on
command level or in a parameter file control data
allocation of the output files (FLAMFILE, FLAMOUT). So
its possible to store files on special volumes, units, and
with SMS-classes without any JCL usage.

File allocation During file allocation, FLAM tries to allocate a new file in
one extend on a disk volume. If there is not enough space
for this large extend, the primary space allocation will be
reduced up to 1/16 of the total amount. This prevents the
allocation of an out of storage situation.

Record Interface The record interface has been improved by new
parameters and functions.

FLMSET Is extended by new parameters for file allocation (as
introduced on the command line).

FLMFKY Function ‘find key’ is now approved for compression mode
ADC/NDC.

FLMGRN Function ‘get record by number’ is now approved for
ADC/NDC as well.

FLMUPD The ‘update function’ is allowed for an update ‘in place’ for
ADC/NDC compressed VSAM-KSDS FLAMFILEs, i.e. the
record length must not change on rewriting the record.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Messages Some messages are enhanced.

COMMENT Comments in ASCII in the FLAMFILE are translated to
EBCDIC for the output message with the internal A/E
translation table during decompression. Entering a
TRANSLATE parameter causes FLAM to use this table.
Nondisplaying characters are visualized by dots ‘.’.

File Allocation Until now an error on file allocation was represented by
the return code 31. Now additional system messages are
displayed in the JCL-log or on the terminal. This is
independent from using the utility or the record interface.

FLAM Panels The interactive FLAM panels have been revised.

Start An easier call to FLAM panels is introduced (but fully
compatible to the older versions). The start procedure
includes (or does not include) all necessary library
allocation to ISPF). So it is easy to support your own TSO
logon procedures.

Wildcards Entering wildcards in the input filename (*, %) on
compression lead to a selection of resulting filenames
which may be edited.

Parameter All parameters are now stored in a parameter file for
execution. So, no double quotes are needed any more for
C’- or X’-parameter (e.g. CRYPTOKEY=X’01AE94’
instead of X’’01AE94’’).

LOAD library Without any input for the FLAM LOAD library in the option
panel the system concatenation (LINKLIST) will be used.

FLTOC Duplicate filenames, ‘exotic’ (non z/OS compliant) or
‘overlength’ names are supported in Group-FLAMFILES
for selection.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentations updates 6 - FLAM V4.1

Changes in manual FLAM V4.0 from April 2003 by this
supplement from April 2005 (FLAM V4.1).

FLAM V4.1 is a true superset of all previous versions,
so any usage that has been working with earlier
FLAM versions remains compatible with FLAM V4.1.

Encryption The AES (Advanced Encryption Standard) algorithm
(introduced in FLAM V4.0) has become faster and saves
up to 50 % CPU-time.

KMEXIT A key management exit may be called by the parameter
KMEXIT. This user written program supports FLAM with a
key for en-/decryption. It is used as an interface to an
existing key management system. Additional data may be
stored as comment into the FLAMFILE during encryption,
sent to the exit for decryption.

KMPARM The KMEXIT routine receives control information from the

caller by this parameter KMPARM.

COMMENT Parameter COMMENT causes FLAM/FLAMUP to store
these data into the FLAMFILE as a comment (user
header) during compression. These data are protocolled
during decompression.

File names To avoid any conflicts with national character sets or
naming conventions in other systems, all file names stored
in ASCII character set are translated for message and
selection in the following way:
all national characters are translated to ‘X’, a backslash ‘\’
to slash ‘/’, and blanks ‘ ‘ to underline ‘_’.
So it is easier to enter foreign file names that are
unsupported in the z/OS environment. The file name itself
remains unchanged in the FLAMFILE.

Entering ‘*DUMMY’ as a file name causes FLAM to use
this file as dummy like the JCL command //ddname DD
DUMMY. I.e. reading an input file leads to EOF (end of
file), writing to an output file has no effect.
So DD-statements are not longer necessary for DUMMY
files.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Enhancements of the New functions are added to the record level interface.
Record Level Interface

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

FLMEME Ends a member in a Group-FLAMFILE..
With SECUREINFO=YES additional data (e.g. byte- and
record counter) are written to the FLAMFILE member
(member trailer) during compression. On AES encryption,
the MAC of the ending member is stored into the member
trailer.
A new member, started with FLMPHD, or FLMCLS, must
follow.

FLMSET New interface to set parameter without changing old
interface calls (e.g. encryption mode, split mode, -size).

FLMQRY New interface to receive parameter values without
changing old interface calls (e.g. encryption mode, split
mode, -size).

Messages New messages (FLM0435, FLM0445, FLM0485,
FLM0487) are provided for integrity of the FLAMFILE, for
KMEXIT and COMMENT.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentations updates 5 - FLAM V4.0A

Changes in manual FLAM V3.0 from April 1999 by this
supplement from April 2003 (FLAM V4.0).

First of all, FLAM V4.0 contains the complete predecessor
version as a subset, so that it is possible to compress and
decompress in the familiar way with MODE=CX7, CX8,
VR8, and ADC.

OS/390 and z/OS FLAM (MVS) V4.0 is usable in MVS as well as OS/390 or
z/Os.

AES-Encryption The National Institute of Standards (NIST) has defined the
Advanced Encryption Standard (AES) for encrypting
data. The method was described in the Federal
Information Processing Standard (FIPS-197) in November
2001 and approved effective May 26, 2002.

FLAM uses this algorithm for encrypting compressed data.
Keys of up to 64 characters can be specified (see also the
description of the PASSWORD parameter in version 3).
Internally, a key of 128 bits is derived (AES-128) and data
security is enhanced by the insertion of verification fields
created also with AES (hash-MACs).

This encryption method is activated by setting the
parameters CRYPTOMODE=AES and CRYPTOKEY=key
and is available with compression modes ADC and NDC
(MODE=ADC or MODE=NDC). With CRYPTOMODE=-
AES the compression mode defaults to ADC rather than
the mode specified in the default settings.

FLAMFILE security By specifying SECUREINFO=YES additional information
is saved with the compressed file that allows verifying the
integrity of the FLAMFILE without decompressing it.
Changes to such a FLAMFILE (e.g. by updating, adding,
or deleting members from an group FLAMFILE) are
detected already by a formal check. This information is
always added when encryption is used. It is ignored by
FLAM 3.0 and does not cause decompression errors
there.

SECUREINFO=IGNORE suppresses this security check.
This may be desirable with secure FLAMFILEs that have
been concatenated.

SECUREINFO=MEMBER limits application of these
integrity checks just to specified compressed members in
an group FLAMFILE rather than to the entire FLAMFILE.

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

FLAMFILE splitting During compression a FLAMFILE can be splitted serially
or in parallel into several parts, subject to the settings of
the parameters SPLITMODE, SPLITNUMBER, and
SPLITSIZE.

Only the filename (or DD-name) of the first fragment of a
split FLAMFILE must be specified at decompression and
no additional settings are required. FLAM detects
automatically whether and, if so, how a FLAMFILE has
been splitted and searches by itself for the remaining
fragments.

Splitting of FLAMFILEs is only available for binary
compression modes (MODE=CX8,VR8,ADC,NDC). Binary
informations have been added to every part of a splitted
FLAMFILE.

Serial Splitting Serial splitting (SPLITMODE=SERIAL) means that when

the file currently used to store compressed data reaches a
specified size limit it is closed and subsequent processing
stores the compressed data into a newly created file
(fragment). The number of fragments of a splitted
FLAMFILE created is not limited. It only depends on the
amount of data generated by the compression process. At
decompression, FLAM verifies the order, the presence
and the affiliation of all fragments.

This feature provides an efficient support for file size
limitations (e.g. with e-mail attachments or file transfers). It
can also improve system performance by allowing
transmission of fragments over a network to begin before
termination of the entire compression process

Parallel Splitting With parallel splitting (SPLITMODE=PARALLEL)
compressed data is stored into a specified number of
fragments (SPLITNUMBER=number). The current version
can handle up to 4 parallel fragments. The size of the
fragments depends on the amount of data generated
during compression. At decompression, FLAM verifies the
order, the presence and the affiliation of all fragments.
Decompression requires the accessibility of all fragments
of a FLAMFILE.

None of the data can be recovered when one parallel
fragment is missing.

One benefit of parallel splitting can consist in improved
utilization of transmission capacities. Also, locally
distributing FLAMFILE fragments may avoid unauthorized
decompression without using encryption.

FLAMFILE examination The parameter CHECKFAST effects a formal examination
of the FLAMFILE. This examination includes verifying all
checksums and assuring completeness and integrity of
the FLAMFILE. These tests are performed without
decompressing it. Specifying an additional parameter,

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

CRYPTOKEY, causes FLAM to also decrypt the
FLAMFILE and check all MACs.

The same tests are performed when the parameter
CHECKALL is specified. In addition, the FLAMFILE is
decompressed without storing the decompressed data.
With encrypted FLAMFILEs, the encryption key must be
provided.

MODE=NDC Data compression can be suppressed using MODE=NDC.
Data are only formatted and, if requested, encrypted. This
saves CPU time with data that do not compress efficiently
(e.g. FLAMFILEs or compressed image files). The same
security features are available as for compressed data.

MODE=NDC is downwards compatible with FLAM V3.0.

FLAM Panels The interactive FLAM panels have been extended to
support the newly added encryption options. In particular,
the FLTOC-Overview allows specifying decompression
parameters (see ch. 9.8.1).

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentations updates 4 - FLAM V3.0A

Changes in manual FLAM V2.7E from April 1995 by this
supplement from April 1999.

First of all, FLAM V3.0 contains the complete predecessor
version as a subset, so that on the one hand it is possible
to compress and decompress in the familiar way with
MODE=CX7, CX8 and VR8; on the other hand creating
the required compressed files is no problem if your partner
has not yet changed over to FLAM V3.0, for example.

New Compression A new high efficient compression method is implemented.
With MODE=ADC (A dvanced D ata C ompression)
the data are compressed "straight forward". The relative
optimization of different search and presentation
techniques is progressive (adaptive model). The code
assignment changes continuously.

Autonomous data segments up to 64 KB in size are
compressed. The maximum permissible number of
records has been increased to 4095 (previously 255).
MAXBUFFER is 64 KB static.

This method is independant from any record- or data
structure and has a higher compression rate than the
predeccesing versions.

New Compressing Syntax With MODE=ADC any compression (FLAMFILE) differs
from each other, even when the input data are identically.
In other words, with MODE=ADC a unique FLAMFILE will
be created.

A new checksum technique is introduced in this
compression method. This is for security reasons (data
manipulation) and to identify problems of file transfer
products (loss or change of data during transmission).

Another modification is the so-called hardware ID. FLAM
forms a 32-bit code from the hardware information about
the environment. This code is incorporated in the
compressed data to create the unique FLAMFILE. It is like
a hard- and software stamp to identify the compressor but
without knowing the name of the compressor itself (it is
unique but anonymous).

Password Data protection and data security, especially protection
against unauthorized attackers, always has top priority.
With MODE=ADC all compressed files can be enciphered
with a password. Without the knowledge of the password
it is impossible to decompress the FLAMFILE.

The PASSWORD itself is allowed to have up to 64 bytes
(512 bits). It can be specified either in printable format with
C'...' or as a hexadecimal string with X'...'.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Enhancements of the A new function is added to the record level interface.
Record Level Interface

FLMPWD passes a password for compression or decompression
using MODE=ADC.

Enhancements of
the user interface A new CLIST procedure is added to use in ISPF function

3.4:

FLTOC Shows the directory of a group FLAMFILE like ISPF 3.4. It
is possible to browse a member of this FLAMFILE
(decompressing ‘on the fly’) or to decompress a member
to store on to disk.

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 3 - FLAM V2.7

Changes in manual from October 1992 (FLAM V2.6) by
this supplement from August 1993 (FLAM V2.7).

FLAM V2.7 is a functional improvement of version 2.6. It is
upward compatible to all previous versions of FLAM.
Compressed data from versions 2.6 and 2.7 are identical
and freely exchangeable as long as no new functions or
file formats are used.

In addition to new functions being added to the record
level interface, enhancements have also been made to the
FLAM utility.

Support of other file formats:

VSAM Linear Data Set

LDS files can be assigned as input or output files.

For performance reasons, FLAM reads or writes 4 KB
LDS blocks at a time in units of 64 KB by default. It is also
possible to specify a logical record and block length in
which the LDS file is to be read or written (e.g.
FLAMIN=LDS.FILE, IRECSIZE=100, IBLKSIZE=65536,
IDSORG=LDS), i.e. the LDS file has fixed records of 100
bytes length with blocking of 64 KB.

Since it is possible to decompress into LDS files from any
file format and still set up a structure, FLAM is particularly
well suited to loading for test purposes.

PO libraries

PO libraries can be compressed and decompressed either
collectively or selectively (FLAMIN= USER.PO(MEM*)).
The directory entries are left unchanged (this also applies
to load libraries!), ALIAS members are supported. In
particular, the FLAMFILE can itself be a PO file.

When compressed library data is transferred to a
computer running under a different operating system (e.g.
BS2000), it is still possible to create a library (e.g. LMS)
again from this data.

Decompression can be performed completely or it is also
possible to specifically select individual members for
decompression.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Automatic creation of files when JCL is not specified

By entering parameters (FLAMIN=filename, FLAM-
FILE=filename, FLAMOUT=filename), the specified files
are automatically allocated by FLAM if a JCL has not been
specified. If FLAMOUT=<*> is specified, all values for
decompression (such as the file name, file type, record
format, record length, block length, file size (for data
compressed under MVS)) are taken from the file header of
the FLAMFILE. This means that the original file is
completely reorganized and recreated with one extent on
the disk.

A specified JCL takes precedence over parameters
settings. SMS is required in order for files to be created
(see chapter 3.1.2.1).

Compressing a number of files into one FLAMFILE in
one run (creating a group file)

Until now, group files could be created only by appending
(DISP=MOD in the JCL) the FLAMFILEs in several steps.

WILDCARD syntax By entering a partially qualified file name (e.g. USER.*.LIST,
in input file USER.A*.OBJ(FL*), ...) or specifying a list of files, all the

files are stored in compressed format in one compressed
file (group file) (N:1 relation).

Group file All the files are assigned dynamically by FLAM, and the
file type (PS, PO, VSAM-ESDS, VSAM-KSDS, VSAM-
RRDS, VSAM-LDS), record format (F, V, B, S, M, A), and
record and block lengths are detected automatically.

The files in this group file can be decompressed either
individually (selected by name) or altogether.

Examples:

All files whose first qualifier is USER and third qualifier is
LIST are to be compressed into the FLAMFILE called
USER.CMP (see also chapter 3.1.4):

//..EXEC PGM=FLAM,PARM='C,FLAMIN=USER.*.LIST,
FLAMFILE=USER.CMP'

Here a DD name is assigned as the input. The file
contains the names of files which are to be compressed in
this call:

//..EXEC PGM=FLAM,PARM='C,IDDN=>DIRIN'
//DIRIN DD *
USER1.FILE.VSAMESDS
USER1.DATA.PSDATEI
USER2.DATA.POLIB
USER3.DATA.POLIB(MEMBER)
//FLAMFILE DD DSN=...

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Compressing a number of files into a number of
compressed files

Conversion rules for file By entering a partially qualified file name (e.g. USER.*.LIST,
names (FLAMFILEs) USER.A*.OBJ(FL*), ...) or specifying a list of files, all the

files are stored in compressed format in a number of
compressed files (N:N relation).

The name of the FLAMFILE is then generated in
accordance with a conversion rule to be specified (e.g.
FLAMFILE=<*.LIST=*.CMP>, i.e. all files with the
extension LIST are given the extension CMP). In this way,
it is also possible to set all the compressed data of a run
as members of a PO library (see chapter 3.1.4).

Example: In the FLAMFILE PO library, all members are
given the name of the compressed list:

//... EXEC PGM=FLAM,
PARM='C,FLAMIN=USER.*.LIST,
FLAMFILE=<USER.*.LIST=USER.PO(*)>'

Decompressing group files

As in the previous versions of FLAM, it is possible to
decompress the entire group file into an output file
specified in the JCL.

Conversion rules for file By entering a conversion rule for the file name for decompression,
names (FLAMOUT) it is now possible for FLAM to create all the files

automatically.

It makes no difference if the compressed data has been
created under a different operating system (VSE, DPPX,
UNIX, OS/2, ...). All files are created using a file format
appropriate to the MVS system.

The only prerequisite is that the file header exists in the
FLAMFILE (parameter HEADER=YES (default setting)).

Unless specified differently the default procedure creates
a PS file with LRECL=32756, BLKSIZE=32760 and
RECFM=VB.

If the compressed file has been compressed on an MVS
system, it can also be created in one extent on the disk.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Examples A group file has been created on an MVS system; the
same user entry exists on the computer currently being
used (see chapter 3.1.4):

//.. EXEC
PGM=FLAM,PARM='D,FLAMO=<*>,FLAMFILE=...'

This means that all the files are decompressed into their
original names. If files have already been catalogued,
these catalogue entries are used (regardless of the entry
in the file header).

The same group file, but name changes are required:

//... PARM='D,FLAMO=< DATA.*=USER2.DECO.*>'

Selection rules Herewith, all files with the prefix 'USER1.DATA.' are
decompressed and given the new prefix 'USER2.DECO.'.
If the group file contains other files with a different prefix,
these files are not decompressed (individual file selection).

A group file has been created on a different computer. No
more information about the file is available:

//... EXEC PGM=FLAM,PARM='D,SHOW=DIR'

This command displays the contents of the file header of
the FLAMFILE. If, for example, the compressed data has
been generated under UNIX and all file names begin with
'/homeA/ag50/dasp.dat/' (followed by the "actual" name),
these names can be converted:

//...PARM='D,FLAMO=</homeA/ag50/dasp.dat/*=USER.
*>'

Internal file names If a group file has been created with HEADER=YES but
FILEINFO=NO (i.e. without saving the file name), each file
can be accessed via the internal name from FILE0001 (for
the first file) to FILE9999 (for the 9999th file) in a
conversion rule.

The saved file name can on decompression generally be
ignored by setting FILEINFO=NO. The internal names are
then used for converting the file names.

Dynamically loadable record level interface

In the previous versions, the FLAM record level interface
had to be rigidly linked to the calling programs.

If the user I/O interface is not used, it is now possible to
load each FLAM call dynamically ('DYNAM' parameter
when using the COBOL compiler). For inlinked purposes,
the record level interface FLAMREC can be linked without
any modification to the program.

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

The record level interface has been enhanced by new
calls

FLMGRN Read with record number

FLMGTR Read backward

FLMFKY Position record using key (Find Key)

FLMFRN Position record using record number

FLMPUH Write user data to file header (User Header)

FLMGUH Read user data

This allows certain operations to be implemented with
fewer function calls. The FIND functions can eliminate the
need for buffer storage in the calling program.
Furthermore, it is now possible to save self-defined data
for each file in the compressed data.

User exits

When user exits (EXK10, ...) are called, their addressing
mode is taken into account. The parameter lists are,
however, stored in the high-order address space as long
as FLAM has been linked with AMODE31. After returning
from the exits, FLAM adjusts itself again to its own
addressing mode, independent on how the return
statement in the exit was programmed.

The user interface

CLISTs More CLIST procedures have been created for the user
interface, in particular for the ISPF panel 3.4:

FLDIR This displays the directory information
of the file

FLDISP This displays the file (BROWSE). If it
is a FLAMFILE, it is decompressed
and written into a temporary file
beforehand.

FLEDIT This edits the file. If it is a FLAMFILE,
it is decompressed and written into a
temporary file beforehand. After
editing, it is compressed again and
written into the same FLAMFILE
again.

FLCOMP This compresses the file

FLDECO This decompresses the file

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Miscellaneous

Due to the many new features incorporated, FLAM can no
longer be run under MVS/SP Level 1.

Empty VSAM files (i.e. files which contain no data) are
handled in the same way as empty PS files for
compression and are processed without an error message
being output.

Chapter 5 has been supplemented by an example
program in COBOL, which serves the entire record level
interface of FLAM.

Chapter 8 (Messages) has been supplemented by the
return codes of the subprogram and record level
interfaces, as well as the condition codes from the call
module FLAM.

In addition to all the examples cited in the manual, the
library FLAM.SRCLIB contains the call module FLAM.
This module can be modified by the user and thus
adapted to suit special requirements (e.g. reentrancy,
condition codes, ...). Example translation tables are also
included.

20 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 2 - FLAM V2.6

Changes in the previous manual from October 1991
(FLAM V2.5) by this supplement from January 1994
(FLAM V2.6).

FLAM V2.6 is a functional improvement of FLAM V2.5A. It
is upward compatible to all previous versions of FLAM.

Compressed data from versions 2.5 and 2.6 are identical
and therefore freely exchangeable as long as no new
functions are used.

A new feature is the compression mode VR8 with
FLAMCODE=ASCII. This compressed data can neither be
read nor generated by FLAM (MVS) versions lower than
V2.6.

In addition to this VR8 compression for ASCII files, the
new features added mainly relate to an expansion of the
FLAM record level interface in connection with
VSAM/KSDS.

Record level interface

Compressed files in the VSAM KSDS format can be
modified record by record. For this purpose, OPEN-
MODE=INOUT has been implemented in the record level
interface. Therefore, the FLMDEL (delete record),
FLMPKY (write record using key) and FLMUPD (change
current record) functions can also be used.

The function FLMFLU (enable matrix buffer) can also be
used for determining an intermediate status for the
statistics.

The function FLMGKY (read record using key) can be
used for all compressed files created from index
sequential original files. Compressed data from all
previous versions can also be processed.

In particular, this also allows index sequential files
archived sequentially with FLAM to be read record by
record by means of keys. The compressed data can also
be stored to tape or cassette.

Presentation of the compressed data

It is now possible to read and generate all compressed
data in EBCDIC and ASCII code. This means also that
CX7 compressed data from ASCII computers can still be
processed even if it has not been recoded on the line.

The FLAMCODE parameter is now also a legal input
parameter, thus allowing optimum presentation of
compressed data to be selected for ASCII data on the
host, too.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

22 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

FLAMFILE in STREAM format

Problems frequently arise with respect to the record length
when transferring binary files from MS-DOS, OS/2 and
UNIX computers to host systems.

The reason is that the transmitting operating systems
either do not support or do not uniformly support record
lengths for binary files, or that the file transfer programs
often do not allow for the record length to be specified.

As a result, a binary file is then cut up by file transfer into
sections of equal length and these sections are stored as
records on the host system. The original record length is
lost in the process and FLAM is not able to detect the
structure of the original compressed file.

This problem is remedied by the integrated
decompression exit *STREAM, which is able to edit a
wrapped, binary compressed file (CX8, VR8) in such a
way that serial decompression is possible. This exit is
automatically activated, if in the first record, an
inconsistency is detected between the FLAM record length
and the DVS record length when reading a sequential
compressed file.

The STREAM exit can also be activated explicitly by the
user with the statement EXD20=*STREAM, if the
inconsistency is not detected automatically because it
cannot be detected at the start of the compressed file.

If possible, compressed files in STREAM format should
not be processed any further and they should not be sent
by means of a file transfer, because repeated reformatting
and wrapping of the files can destroy their ability to be
processed. It is better to decompress such a file and then
to compress it again afterwards.

Use of this exit is indicated by the following message:
FLM0465 USED PARAMETER EXD20: *STREAM. The
value '*STREAM' is returned in the parameter EXD20 on
the record level interface.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Documentation updates 1

Changes in manual from 1989 (V2.0) by reissue from
October 1991 (V2.5A)

FLAM V2.5A (MVS) is a completely new developed
product. Compared with the previous version, it's
functionality was enhanced in such a way that a new
reference manual became necessary. However, the
reference manual for version 2.0C. stays valid for all old
functions and calls. In medium term, users should migrate
to the new version.

Compatibility of FLAM V2.5A (MVS) is compatible to the version 2.0 if only
compressed data sequential organization is used for the compressed file.

Additionally FLAM V2.5A is upward compatible to all
previous versions of FLAM.

The most important new features are:

Operating systems FLAM V2.5A is available for:
MVS, VSE, DPPX/370, DPPX/8100, AIX/6000
BS2000, SINIX (all processors)
VMS, STRATUS, TANDEM
MS-DOS, OS/2
SCO-UNIX, SCO-XENIX, UNIX V
UNIX for HP, NCR and UNISYS systems
A FLAM nucleus on COBOL basis is available for
OS/1100 from UNISYS.
Other implementations are planned for VM, AS/400,
APPLE/MAC, CTOS, OS/3, VS and other UNIX systems.

Compatible interfaces All implementations provide compatible subprogram
interfaces. This allows not only to move compressed data
in the FLAMFILE from system to system. It is also
possible to do this with application programs containing
FLAM calls. All call interfaces of previous versions are
supported in an upward compatible way.

XS/ESA supported On all /370-compatible systems (MVS, DOS/VSE,
BS2000, etc.) the system independent program parts are
identical. FLAM is completely reentrant and can run under
all address modes (24 and 31 bit).

FLAMFILE The restriction that the FLAMFIILE must be a sequential
PS file is removed. All formats and file organizations for
the original file are now supported for the compressed file,
too. (PS, IS, VSAM-ESDS, KSDS, -RRDS)

Record level interface In version 2.5A a record level interface is provided for the
first time. This interface allows to process multiple files
also. This interface provides the usual calls for file access,
like OPEN, GET, PUT, CLOSE, etc., as provided by
operating systems and higher level programming
languages (such as COBOL) on mainframes.

24 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Random access The use of this record level interface and the new facility
to store compressed data in index sequential files (VSAM
KSDS) allows a fast random access to compressed data.
This is well suited for setting up low frequency archives
(documents and similar data) as online archives.

Integration The record level interface enables FLAM to be integrated
into applications with a low effort, provided the application
source code is available. At the other hand, for a set of
application packages prewritten interfaces are available.
This allows to use compressed files transparently within
these packages (in the same way as uncompressed files
would be used). The concept of the record level interface
allows the integration of FLAM into an application within a
few days or weeks.

Portability The idea of integration and the portability of FLAM in
heterogeneous system environments is based on a
consequent separation of the components in system
specific and system neutral elements. All interfaces use
the standards for subroutine linkage. This allows to
exchange all system specific components (memory
management, I/O, time evaluation, etc.) easily.

User I/O Independently from the record level interface for original
data, a user interface for I/O from and to files is supplied.
This interface can be activated dynamically via a
parameter (DEVICE=USER) for all file I/O (original file
input, compressed file output, compressed file input,
original file output).

Only one program Compression and decompression are now united in one
program. This was done in respect to future function,
especially for update of index sequential compressed files
(OPEN=INOUT/OUTIN, PUTKEY, DELETE).

Generation All parameter default values can be defined via a
generation step in a comfortable way. For this generation
it is not necessary to compile program parts. All message
texts, all parameter default values, and the syntax for
parameter input are contained in one data module
(FLAMPAR). This enables an easy adaption to other
languages.

File formats The FLAMFILE can now be created and read in all file and
record formats, previously only supported for
uncompressed files.

This makes the transfer of compressed files much easier.

Conversion During creation and conversion of files the user is
released from the task of observing the specific properties
of a given data management system as much as possible.
(E.g., the relationship between block length and record
length automatically considered and adapted to the
requirements of the specific DMS.)

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Keys During conversion between sequential and index
sequential files it is possible to generate or delete keys if
required. The key position of index sequential files is
adapted automatically if a file is converted from fixed to
variable record format or vice versa. The key position is
stored in a system independent way and is independent
from the record format, too.

Protocol The parameter protocol has been improved and unified. At
the other hand the message layout was kept as close to
the old form as possible.

During decompression the old FLAM version is displayed
now and the size of the matrix buffer and the compression
method are documented as well. The function INFO=HOLD
can now be used, too, with compression to obtain the
specified parameters.

Statistics Statistical data is evaluated based on true data (without
length fields and delimiter strings). So the resulting values
are independent from record format and operating system.

User interface A user interface under TSO/ISPF has been developed to
support the user. It enables the use of FLAM without
having to deal with JCL statements for TSO or batch
processing.

26 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

During the redesign some changes were necessary:

The message, that an original file is already a FLAMFILE,
has been removed. This statement could only be made
with a certain probability but not with absolute certainty.

Modification of the code conversion table via PATCH
parameter is not longer supported.

The CLIMIT parameter is only evaluated with INFO=YES.
For efficiency reasons no statistic is evaluated for
INFO=NO.

Parameters from previous versions are always accepted
and mapped on the new parameters if possible (e.g.,
SANZ=1 is equivalent to MAXRECORDS=1). Other
parameters are simply ignored (e.g., PATCH).

The program size has been increased due to functional
improvements and the combination of compression and
decompression. On the other hand, FLAM can run entirely
in the high-order address space.

The dynamic memory requirements for the matrix buffer
have been doubled. This memory may now also be
allocated in the high-order address space.

The CPU work load did not change or was reduced by
15%.

The receiving and sending of compressed data at the
KOFLAM/DEFLAM interface is not longer supported. This
has been replaced by the repeatedly usable, reentrant-,
and XA-capable record level interface FLAMREC. For
return of compressed data the user interface for file
access USERIO is provided.

List of significant changes made with this version:

The modules for compression/decompression are now
combined into only one program. The program call for the
FLAM utility is FLAM.

The according subprogram call for the utility function is
FLAMUP. The subprogram interface has been changed.

The FLAM record level interface replaces the programs
KOFLAM/DEFLAM in a new but incompatible form. The
record level interface is completely reentrant and can run
under XA/ESA.

The FLAM interfaces and all FLAM parameters of
previous versions are supported in an upward compatible
manner.

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Documentation updates

Calls from FLAM V1.x (like FLKOMP, FLKOMPV, ...) are
accepted and emulated in this version for the last time.

The KOFLAM/DEFLAM interface can still be used but only
with the functionality of version V2.0 and without returning
compressed files.

Beside the record level interface for original data an
additional user interface for I/O (USERIO) is supplied. This
user interface can be activated for uncompressed as well
as for compressed files via parameters.

All user exit interfaces have been expanded with a work
area of 1 KB in a compatible way. This improves the
reentrancy of the exits considerably.

The limitation of the FLAMFILE on sequential PS files has
been removed. Now the FLAMFILE can have all formats
and file organisations of the original file (PS, IS, VSAM-
ESDS, -KSDS, -RRDS).

Especially important is that now a FLAMFILE can be
created in the VSAM KSDS format. This allows direct
access (retrieval) to compressed data using the original
keys!

On utility level new parameters were introduced.
Parameters of previous versions are accepted and are
mapped onto the new parameters. E.g., the CODE
parameter is equivalent to the TRANSLATE parameter.
Other parameters are simply ignored, like PATCH.

A FLAM protocol is now only issued by the programs
FLAM and FLAMUP. (The new record level interface does
not return a protocol, only return codes.) The protocol has
been enhanced while keeping as much from the old layout
as possible. It has been homogenised and contains more
information. Now the used CPU time is displayed in
addition to the elapsed time. After decompression the
FLAM version used for compression, the size of the matrix
buffer, and the compression mode (MODE) are displayed.

The dynamic memory requirement for the FLAM matrix
buffer (MAXB parameter) has been increased by more
than 100 percent.

28 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Contents

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

Chapter 1 1. Introduction 1

1.1 Introduction to FLAM® with

MODE=ADC 7

1.2 FLAM® and AES 17

Chapter 2 2. Functions 3

2.1 The FLAM Utility 3

2.1.1 File compression using FLAM 3

2.1.2 Decompression of files using FLAM 5

2.2 Subprogram FLAMUP 6

2.3 Interface on record level: FLAMREC 6

2.4 I/O User Interface 8

2.5 User exits 9

2.5.1 Original data input EXK10 9

2.5.2 Compressed data output EXK20 9

2.5.3 Original data output EXD10 9

2.5.4 Compressed data input EXD20 10

2.5.5 Key management KMEXIT 10

2.6 Bi-/serial compression with BIFLAMK 12

2.7 Bi-/serial Decompression BIFLAMD 14

Chapter 3 3. Interfaces 3

3.1 FLAM Utility 3

3.1.1 Parameters 4

3.1.2 JCL for FLAM 39

3.1.3 Condition codes 44

3.1.4 File names 45

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

3.1.4.1 File name list 45

3.1.4.2 Wildcard syntax 46

3.1.4.3 Selection rule for decompression 48

3.1.4.4 Conversion rule 49

3.2 Subprogram interface FLAMUP 53

3.3 Record level interface FLAMREC 58

3.3.1 Function FLMOPN 66

3.3.2 Function FLMOPD 67

3.3.3 Function FLMOPF 69

3.3.4 Function FLMCLS 71

3.3.5 Function FLMDEL 72

3.3.6 Function FLMEME 73

3.3.7 Function FLMFKY 74

3.3.8 Function FLMFLU 75

3.3.9 Function FLMFRN 76

3.3.10 Function FLMGET 77

3.3.11 Function FLMGHD 78

3.3.12 Function FLMGKY 80

3.3.13 Function FLMGRN 81

3.3.14 Function FLMGTR 82

3.3.15 Function FLMGUH 83

3.3.16 Function FLMIKY 84

3.3.17 Function FLMLCR 85

3.3.18 Function FLMLOC 86

3.3.19 Function FLMPHD 87

3.3.20 Function FLMPKY 89

3.3.21 Function FLMPOS 90

3.3.22 Function FLMPUH 91

3.3.23 Function FLMPUT 92

3.3.24 Function FLMPWD 93

3.3.25 Function FLMQRY 94

3.3.26 Function FLMSET 96

3.3.27 Function FLMUPD 98

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

3.4 User I/O interface 99

3.4.1 Function USROPN 100

3.4.2 Function USRCLS 102

3.4.3 Function USRGET 102

3.4.4 Function USRPUT 103

3.4.5 Function USRGKY 103

3.4.6 Function USRPOS 104

3.4.7 Function USRPKY 104

3.4.8 Function USRDEL 105

3.5 User exits 106

3.5.1 Input original data EXK10 106

3.5.2 Output compressed data EXK20 108

3.5.3 Output original data EXD10 110

3.5.4 Input compressed data EXD20 112

3.5.5 Key management KMEXIT 114

3.6 Bi-/serial compression BIFLAMK 116

3.7 Bi-/serial decompression BIFLAMD 118

3.8 Utilities 124

3.8.1 FLAMCKV 124

3.8.2 FLAMCTAB 127

3.8.3 FLAMDIR 129

Chapter 4 4. Method of Operation 3

4.1 Processing of file with the utility 4

4.1.1 Compression 4

4.1.2 Decompression 5

4.2 File processing with the FLAM subprogram 6

4.2.1 Compression 6

4.2.2 Decompression 7

4.3 Processing of records 8

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

4.3.1 Compression 8

4.3.2 Decompression 9

4.4 User I/O 10

4.5 User exits 14

4.5.1 Utility 14

4.5.1.1 Compression with user exits 14

EXK10, EXK20

4.5.1.2 Decompression with user exits 15

EXD10, EXD20

4.5.2 Record level interface 16

4.5.2.1 Compression with user exit EXK20 16

4.5.2.2 Decompression with user exit EXD20 17

4.6 Bi-/serial compression 18

4.7 Bi-/serial decompression 19

4.8 The FLAMFILE 20

4.8.1 General description 20

4.8.2 Group file 25

4.9 Heterogeneous data exchange 26

4.10 Code Conversion 28

4.11 Transformation of file formats 29

Chapter 5 5. Application examples 3

5.1 JCL 3

5.1.1 Compression 3

5.1.2 Decompression 5

5.1.3 A more complex example 7

5.2 How to use the record level interface 11

5.2.1 Compression 11

5.2.2 Decompression 14

5.2.3 Random access to an 17

index sequential FLAMFILE

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

5.2.4 Example for the entire record level interface22

5.3 User I/O interface 46

5.3.1 ASSEMBLER example 46

5.3.2 COBOL example 60

5.4 How to use the user exits 66

5.4.1 EXK10/EXD10-user exit 66

5.4.2 EXK20/EXD20-user exit 70

5.5 Using FLAM with other products 73

5.5.1 Using with NATURAL 73

5.5.2 Using with SIRON 73

Chapter 6 6. Installation 3

6.1 FLAM licence 3

6.2 Component list 4

6.3 Installation of FLAM 5

6.4 Generate default parameters 5

Chapter 7 7. Technical data 3

7.1 System environment 3

7.2 Memory requirements 4

7.3 Performance 4

7.4 Statistics 5

Chapter 8 8. Messages 3

8.1 Messages from the Utility 3

8.2 Message Listing 4

8.3 FLAM return codes 20

8.4 Conditions codes 29

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Contents

Chapter 9 9. The FLAM user interface 3

9.1 Summary 3

9.2 FLAM panels 3

9.2.1 Example for compression 9

9.2.2 Example for decompression 13

9.2.3 Informations from a FLAMFILE 15

9.3 FLCOMP 18

9.4 FLDECO 19

9.5 FLDIR 20

9.6 FLDISP 21

9.7 FLEDIT 23

9.8 FLTOC 24

9.8.1 Browse a FLAMFILE member 25

9.8.2 Informations about a FLAMFILE member 27

9.8.3 Decompression of a FLAMFILE member 28

9.9 FLCKV 30

Appendix

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 1:

Introduction

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

1. Introduction

FLAM is a software product for data compression typically
used in applications in banking, wholesale and retailing,
industry and public administration. FLAM is best suited for
tabled data.

FLAM compresses the standardized data formats as used
in banking with a typical compression rate of 4:1. For lists
of material the compression rate can be as high as 95%
(20:1).

Although that FLAM was not specially developed for
banking applications, it is now accepted as the optional
standard in data compression within electronic funds
transfer. FLAM is used because of its flexibility and the
proven short turnaround time.

With each new FLAM implementation, new benefits arise
for each user without additional costs. It is in the interest
of each user to ask for the support of FLAM by hardware
manufacturers and third party software houses, and to
support the installation of FLAM at sites of a business
partner with whom electronic data is exchanged. That is
the special benefit of FLAM regarding cost effectiveness.

FLAM uses the algorithm of the Frankenstein-Limes-
Access-Method for structure oriented data compression.
This method has been patented in Germany, Europe and
USA beginning with 19.7.1985.

FLAM works without pre analysis of the data and without
additional tables. This ensures that decompression can be
always performed based on the syntax of the compressed
file (FLAMFILE) and the FLAM program. This also
ensures upward compatibility that allows for long time
archiving.

FLAM does not need any additional specifications about
the data to be compressed. The compression method is
invariant to file, record, and field formats.

However, the compression effect depends on the actual
data. Structural distortion mostly leads to worse
compression results.

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

FLAM is the only product that caters for the following
principles:

Transparency On online data storage media files compressed with FLAM
can be used in connection with both sequential and index
sequential access methods without additional intermediate
conversions. The same transparency applies for data
exchange (file transfer) in a heterogeneous network
between computers with different hardware and different
operating systems.

Portability Formatting of the compressed files can be controlled in a
way that all requirements are met for maximum memory
usage and for portability on any type of transmission lines
with any file transfer product. This is especially true for
punched card formats (80 columns) and for FTAM
formats. Compressed records can be created in both fixed
and variable format.

Convertibility FLAM is even able to generate compressed files in a
printable format. This allows to convert the compressed
file from EBCDIC to ASCII and vice versa at any time. At
the other hand, code conversions can be performed in
combination with compression or decompression.

Compatibility Optionally FLAM can convert file and record formats. This
allows FLAM to solve compatibility problems between
heterogeneous systems or version dependent file
management systems. Restrictions regarding record
format (fix), duplicate key, etc. are neutralized using FLAM
as an access method.

System independency A FLAMFILE can be used on all computer systems where
FLAM is available. The FLAMFILE is the base for the
access method FLAM without sacrificing the different
system specific access methods of the particular file
management system.

Continuity A FLAMFILE can be converted during decompression into
any file or record format as specified by the user. This
guarantees continuity. An archived FLAMFILE can always
be processed (especially decompressed) on any system.

This insures independency from a particular operating
system. However, it must be made sure, that the storage
medium can be read by the hardware (e.g. tape unit). Also
the FLAMFILE should not be converted into a system
dependent format of any given archiving product.

Data security FLAM encrypts data and seals the compressed files using
checksums for better protection. The FLAMFILE has
internal synchronisation points, which allow to restart
decompression after an erroneous data block caused by
physical defects. Requirements for revision and controlling
are fully supported.

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

Interfaces FLAM provides a variety of interfaces derived from a real
file management system with index sequential access.
FLAM can be executed as a subprogram under control of
an application. User exits within FLAM allow pre- and
postprocessing of uncompressed records as well as of
FLAMFILE records.

Operating systems FLAM is currently available for a variety of operating
systems:

FSC BS2000/OSD
Sinix
Reliant Unix

HP HPUX
Windows
OpenVMS (DEC)
True64 UNIX (DEC)
Non Stop OS (Tandem)
OSS (Tandem)

IBM z/OS, OS/390, MVS, MVS-Subsystem
Linux (S/390, z-Series)
VM, VSE
OS400
AIX

Microsoft Windows (9x, NT, XP, Vista, 7, 200x,
 Server)

NCR Unix

SCO SCO-Open Server
SCO-UnixWare

SUN SOLARIS

PCs Windows (9x, NT, XP, Vista, 7, 200x,
 Server)

Linux

Other versions can be made available on demand.

Standards FLAM is an optional compression standard for different
applications used in German banking, like BCS, EAF
(LZB), DTA, and others.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

Manufacturer limes datentechnik gmbh

Louisentrasse 21

D-61348 Bad Homburg

Germany

Telephone ++49 6172 / 5919-0

Telefax ++49 6172 / 5919-39

eMail: info@flam.de
eMail: info@limesdatentechnik.de

Internet: http://www.flam.de
http://www.limes-datentechnik.de

Marketing Bank Verlag GmbH (BCS modules)
limes datentechnik gmbh (other systems)

Furthermore we refer to the ISIS reports (NOMINA).

Cooperations The following products support FLAM via interfaces:

BCS Bank Verlag GmbH

CFS OPG Online Programmierung GmbH

MultiCom CoCoNet AG

NATURAL Software AG

SFIRM BIVG Hannover GmbH & Co.KG

SIRON Ton Beller AG

Licence fees apply to some of these interfaces.

For electronic banking (BCS) some banks and their
partners provide complete solutions for PC users.

For the manufacturers of FLAM each new cooperation
with software houses based on the FLAM standard is
welcome. This allows maximum benefit for all partners.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

The advantages of FLAM in key words:

Data transmission

 Cost reduction by volume reduction (e.g., packet
switching)

 Faster transmission by virtualisation

 Implicit acceleration of other transmissions

 Change to slower physical lines possible

 Lower access and operation costs

 Less transmission faults due to physically slower
transmission

 Solution for technological bottlenecks

 Increase of potential transmission frequency

 Reduction of network node and buffer workload

 More efficient reaction possible to line breakdowns,
transmission faults, or operating mistakes

 FLAMFILE in parking position saves space, allows
immediate restart of transmission and can be archived

 Compatibility of the FLAMFILE in heterogeneous
networks

 Portability of the FLAMFILE due to format options

 Convertibility of the FLAMFILE for printable data by
pre- and post character conversion possible

 Conversion of record and file formats possible (Utility)

 Transparency of FLAMFILE to other applications

 More remote controlling possible due to volume reduction

 More data exchange via line possible due to volume
reduction

 More swapping to emergency computer centres
possible due to volume reduction

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

 Automated remote archiving possible

 Automated remote restore possible

 Better data revision due to automated procedures

 More data integrity due to check sum technique

 More data security due to FLAM typical data encryption

 Higher efficiency of additional cryptographic methods

Data storage

 Reduction of data storage on all media

 Fewer requirements for physical space

 Less multi volume files (Disc, Tape, Floppy)

 Fewer requirements for power, air conditioning, protection

 Less fixed capital required

 Less overhead in archive and more continuity

 Less I/O, less work load for channels

 Probably fewer controllers, I/O ports, buffers

 Acceleration of batch copy processes and of
backup-/restart processes, thus more resources for
automation of computer centre

 Shorter processing times and shifts

 Additional data protection due to FLAM access

 Integrated protection against manipulation due to FLAM
syntax

 Process typical data encryption

 Effective protection of logical deleted data

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

 Innovative (combined) access methods for index
sequential and logically blocked data in
heterogeneous environments.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

1.1 Introduction to FLAM® with
MODE=ADC

Since version 3 FLAM offers 3 fundamental enhance-
ments:

 A universal MODE=ADC (Advanced Data Compression)

 A new, sophisticated FLAM syntax (Frankenstein-Limes-
Access Method)

 An extremely efficient PASSWORD enciphering system.

First of all, FLAM contains the complete predecessor
version as a subset, so that on the one hand it is possible
to compress and decompress in the familiar way with
MODE=CX7, CX8 and VR8; on the other hand creating
the required compressed files is no problem if your partner
has not yet changed over to FLAM V3.0, for example. This
applies not only to interfaces and user exits, but also to
the elegant MVS subsystem. (User exits are needed for
inserting/deleting and for editing records/fields before/after
the compression/decompression procedure.)

The above-mentioned compression modes have yielded
extremely good results for the kind of data that typically
arises with commercial applications on mainframes. It is
up to each user to decide whether or not to continue using
this technique, which often already permits compression
scores of 85% or more.

The increasing penetration of PC and UNIX systems into
commercial data processing has led to significant changes
in data structures. The FLAM compression technique,
which is based on structural redundancies, has had to be
extended to take account of context-related views.

FLAM was originally - and still is - an access method
designed to facilitate efficient working with compressed
data. By definition, this philosophy forbids FLAM from
creating or using any kind of temporary files. Preliminary
analyses for determining the most suitable compression
technique and/or multiple-step procedures are quite
simply irreconcilable with demands for a high-
performance, direct-access method (for autonomous
segments), with a concept that is essentially invariable
across almost all platforms (from PCs to mainframes).

The user should be allowed to compress as early as it
appears useful to do so and decompress as late as
necessary - in isolated cases (retrieval) where possible
only locally and if appropriate selectively. The FLAMFILE®
should be capable of being used consistently across all
platforms for storage, archiving and file transfers, including
backups (transferring to external storage), as a standard
tool for every situation.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

MODE=ADC (Advanced Data Compression) compresses
in a very straightforward way. The relative optimization of
different search and presentation techniques is
progressive (adaptive model). The code assignment
changes continuously.

Autonomous data segments up to 64 KB in size are
compressed. The only way in which the user can influence
this size is via the number of records (MAXRECORDS).
The maximum permissible number of records has been
increased to 4095 (previously 255). MAXBUFFER is 64
KB static (ADC).

The term "record" refers to a logical unit that is defined in
the user's data management system. Record formats can
be either fixed or variable. Some systems use a length
field for records, while others have a delimiter. This is
important if, from the point of view of an application or
when data is exchanged, records are crucial as a logically
invariable access basis (similar to the record interface in
FLAM during compression/decompression).

On systems that have no file catalog containing
information about what is to be interpreted as a record, it
is perfectly possible to simply read in 64 KB; this will not
have any adverse effects on compression with
MODE=ADC.

If a file with delimiters is read on a PC or UNIX and these
delimiters are not interpreted as such, problems may be
encountered if the file needs to be exchanged in a
heterogeneous environment after decompression and
adapted to this new environment.

FLAM allows problems such as these to be precluded
right from the start by setting certain parameters, providing
the record format is known and utilized. It permits a
neutral, future-proof presentation, which can be matched
automatically to the new situation when the file is
decompressed (format conversion).

Certain files or file groups (e.g. libraries) are inevitably
reorganized whenever a file is compressed and
decompressed again with FLAM.

The compressed file - the FLAMFILE - can only be
formatted individually with FLAM, because this
"temporary" file may have to satisfy completely different
requirements from the original file, for instance in
connection with file transfers (portability).

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

Example: IBM's RJE is only capable of transferring files
with a fixed record format. FLAM compresses the file in
question and turns it into a FLAMFILE in RJE format.
When it is decompressed, another format conversion
takes place without the user even noticing. FLAM can also
bundle so-called load modules stored in an MVS library
together in a FLAM group file (i.e. concatenate the
compressed files) and export them to a PC. If this data is
later transferred back to an MVS system, decompressed
there with FLAM and re-saved in a library, it can be called
up and loaded from the MVS system in the usual way.

If printable data is coded in such a way that it can be
converted unambiguously (1:1) from EBCDIC to ASCII or
vice versa, this conversion can be activated when the file
is compressed or decompressed. The tables that are
supplied together with the software are only suggestions,
as there are far too many possible variants for them all to
be reproduced. You can adapt these tables easily to suit
your own particular needs. We recommend converting the
code on the same system that you intend to use for
decompression, because going on past experience the
relevant table settings are likely to be most reliable on that
system. 1:1 convertibility and compatibility are then
guaranteed.

If you need to exchange data in a printable format using a
file transfer method that converts the code "en route", you
must use the predecessor version with MODE=CX7.
Experience has shown that code conversions with file
transfer products are far too unpredictable. We can only
advise you not to attempt them in the first place. The
safest procedure is to exchange binary data and to
convert the code either before or (preferably) afterwards.
With edited listings there is also the problem of the control
function of the first byte in each record (print control
characters).

If the transfer has to take place in ASCII, there are
automatic mechanisms in many file transfer products for
recoding binary data temporarily into what appears to be
printable data and then restoring it to its original state after
the transfer. You could write your own 3:4 routine for this
purpose and activate it in a FLAM user exit (portability).

Format errors, which are reported by FLAM as checksum
errors, are a relatively common occurrence in connection
with file transfers involving FLAMbéd data. All the parties
concerned can thus be certain that the transfer was error-
free from the user's point of view (beyond the limits of the
FT protocol). Some PC products do not even have a
checksum for the compressed file, but instead just a single
checksum for the complete original file, which may be up
to 4 GB in size. (FLAM does not impose any restrictions
on the file's type or size.)

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

What an irony: without FLAM, this kind of error would
often not even be noticed. It is thus easy to gain the false
impression that the error would never had occurred if
FLAM had not been around to interfere. The combination
of FTP and FLAM exhibits particularly remarkable synergy
effects, which are indispensable on account of the
inadequate security and stability of the FTP. FLAM is also
very important as a pre-post-process for file transfers with
checkpoint restart.

There is actually a whole series of problems related to file
transfers that can only be solved using FLAM. In the very
few instances where this is not the case, the reason lies in
the problem itself and not in FLAM. Major problems are
encountered, for example, when character sets are
recoded if umlauts continue to be employed, even though
the stock of special characters has been largely used up.

It is not possible to compress without creating a working
memory for temporary information. FLAM requires around
160 KB for MODE=ADC over and above the I/O areas.
From the algorithmic point of view, this basic memory
must always be available, if the necessary CPU time is to
be kept within reasonable limits. Compared with other
models, this memory size is relatively small for an
adaptive model.

If we were to compare the compression effects fairly with
those of other products (usually PC products), we would
have to split the original file into segments (small files) of
64 KB each beforehand and then add the individual
results together. Also, a FLAMFILE has a certain amount
of "packaging", which inflates the compressed file by up to
2%, both for security reasons and on account of the
innovative access techniques.

One advantage of retaining the segmentation principle is
that in the event of a serious data error only a single
segment will be affected. Every segment in a FLAMFILE is
considered independently of the others (in the same way
as for a transaction) and is also saved as such (packed).
This makes synchronization easy; you can start at any
segment half-way through.

If no compression effect whatsoever is evident after the
compression procedure has completed approximately 16
KB of a particular segment, the compression is aborted for
this segment with MODE=ADC and the original input of up
to 64 KB (segment) is used instead 1:1. If the
compression effect in a segment does not begin until after
16 KB, it will no longer be detected, because the logic
function that compares the "cost" and the "benefit" will
come to the conclusion that this segment is probably not
compressible.

Reason: the poorer the compression effect, the greater
(unfortunately) the amount of CPU time that is needed
(ultimately out of all proportion). This is an inherent
drawback of the general principle.

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

FLAM owes its capability for serving multiprocessor
systems to its use of a layer model: one process reads,
forms the segments and distributes them to other
processes for the purpose of compression; another
process collects the compressed segments, formats them
as a FLAMFILE and writes them.

Although this technique is not actually critical at the
present moment, FLAM's model will be ready when the
time comes.

FLAM does not simply refuse to work if the input is itself a
FLAMFILE. This can sometimes be an extremely useful
characteristic. Let us assume, for instance, that you have
a library containing a large number of small elements
which first of all need to be compressed autonomously
and saved as a group file, so that the library can be
reconstructed correctly on the basis of the element names
and their attributes. In this case, you cannot expect an
excessive amount of compression.

If you use FLAM V2.x with MODE=CX8 and MAX-
RECORDS=1 for this purpose, all you will achieve with
this leader will be to create the above-mentioned group
file, in which greater importance is attached to the diverse
information than to the compression effect. This "flat" file
can be compressed by FLAM V3.0 with MODE=ADC. You
could also use a utility that is capable of performing a
similar function (group file) instead of the leader with
FLAM V2.x.

In exceptional cases, you may even have very highly
structured files which you can compress relatively
effectively beforehand with FLAM V2.x, MODE=CX8 and
MAXRECORDS=255; you can then compress the
resulting compressed file further with FLAM V3.0 and
MODE=ADC. Generally speaking, however, FLAM V3.0
with MODE=ADC and MAXRECORDS=4095 always
performs better than the predecessor version or than a
two-step variant with it. There is no compulsion to change
to a different mode if you are satisfied with the old
compression technique and syntax of FLAM V2.x. All new
features (e.g. PASSWORD enciphering) require at least
FLAM V3.0 with MODE=ADC though, especially since the
FLAMFILE syntax has been significantly improved.

The new syntax ensures firstly that data which cannot be
compressed despite the ADC technique is not expanded
by more than 2%, and secondly that the originals - which
in such cases are merely copied - are rendered
unrecognizable.

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

The reason for this is the checksum method, which is the
only one of its kind in the world. At the time the four
checksums (!) are formed, the third of these encrypts the
compressed input in such a way that the procedure can be
reversed by applying the checksum function twice. If the
compressed data in a segment has been mutilated (data
errors, manipulation), the defect will spread to the
remainder of the compressed segment "like the plague".
The defective data is then useless. The decompression
procedure is not even started! This CRC routine can
moreover only be activated in FLAM if the complete
compressed segment is available for "decryption".

Certain PC products allow the original to be "read" if it has
not been compressed. CRC errors are not reported until
the decompressed file is closed, because the checksum is
based on the original data. The decompression is not
aborted despite the checksum error. The decompressed
file may contain many different kinds of error, including
size errors, even though the number of bytes that appears
in the header of the compressed file is correct.

Since FLAM V3.0 with MODE=ADC the segment
checksums are linked together by means of a connector.
Providing compression and decompression are always
serial, the integrity of this sequence can be verified.

The connector is additionally given a time-dependent color
code, so that if the same segment is compressed again
later on it has a different appearance. The compression
effect is identical.

Another modification is the so-called hardware ID. FLAM
forms a 32-bit code from the hardware information about
the environment. This code is incorporated in the
connector. If exactly the same file then happens to be
compressed twice at times that do not result in different
connector settings, even though different hardware
environments are used, the connector - and thus also the
external appearance of the compressed file - is modified
automatically.

The aim of these techniques is that, insofar as possible,
every data segment compressed with FLAM should be
unique in terms of its contents (original), its environment
and its time of compression. The sum of the checksums
for the various layers is a signature that can be used by an
addressee as unequivocal confirmation of reception
(complete and with no loss of integrity).

The FLAMFILE itself is written record-by-record for format-
related reasons, in the same way as in the predecessor
version (e.g. fixed 512 bytes). Each record in the
FLAMFILE has a simple checksum, which allows you to
verify that no formatting errors have occurred during the
transfer. This is still a relatively common type of user error
(regardless of whether or not FLAM is involved). The
compressed segment is not "assembled" until after the
format check.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

Every compressed segment has a header. This allows its
exact position to be located in a FLAMFILE (synchro-
nization). The header must not be encrypted (and indeed
it is not encrypted!) for this reason. It is however protected
by means of a separate checksum, so that you can be
sure that the information it contains is always correct.

You can find our product name FLAM in ASCII code at the
end of every compressed segment. This is useful for
synchronization in the event of a defect or if you reading
backwards.

A special, hidden checksum refers directly to the
enciphered PASSWORD. If this checksum is not correct
and the PASSWORD enciphering FLAG is set, an attempt
has been made to decode with an invalid PASSWORD. If
the PASSWORD FLAG is not set, but somebody else is
using a PASSWORD, the decoding and decompression
functions will stop with mentioning this input error.

A segment decompression procedure never starts if any of
the four checksums are invalid. Apart from anything else,
there are technical reasons for this. Decompression
presupposes a certain, constantly changing interpretation
of the code. A defect will cause the decompression
function to "go spinning out of control". FLAM prevents
this by using a layer model with four checksums. If you
attempt to subvert this principle even though an error has
been reported (error message, return code), for example
by manipulating the data with program patches, you are
likely to provoke extremely serious consequential errors.

Data protection and data security, especially protection
against unauthorized attackers, always has top priority,
even without PASSWORD enciphering (see V3.1 Outlook
at the end of this document).

The PASSWORD itself must not be longer than 64 bytes =
512 bits. It can be specified either in printable format with
C'...' or as a hexadecimal string with X'...'. The number of
what might be termed "half" bytes in a hexadecimal input
must work out as a pair. If you enter a PASSWORD with
C'...', you should remember that the binary conversion is
dependent on the system generation. The same C
PASSWORD in conjunction with a different character
conversion to binary code will result in a different internal
PASSWORD. You could find this useful if you are working
in this environment yourself and do not alter anything.
Using apostrophes as delimiters means that any trailing
blanks are also considered to be part of the PASSWORD.
A PASSWORD defined with C'...' must be entered again
exactly before you can decode. It is advisable to test both
sides in advance whenever you specify a new
PASSWORD.

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

If you enter a PASSWORD incorrectly, you are allowed
exactly one attempt at utility level, because this is all that
is permitted by the internal transfer method in FLAM. You
must start FLAM again and either enter or assign a new
PASSWORD before you are allowed another attempt. The
most you can do is to automate or optimize this restart
procedure if you are using FLAM's internal interfaces.

The PASSWORD is processed internally in FLAM in such
a way that it is impossible to infer any information about it.
All attempts to analyze it with a view to securing a
personal advantage are doomed to failure. We, the
manufacturers, will be unable to help you in any way if you
forget your PASSWORD. It is not even possible for an
outsider to determine the length of your forgotten
PASSWORD, nor whether you entered it with 'C...' or with
'X...'. It is highly unlikely that you will ever find any useful
information on the Internet from hackers about how you
could cut corners.

Before the first segment of a FLAMFILE can be
deciphered at all, certain preparatory steps must be
completed internally; they take up CPU time but are
unavoidable. This means that there is a basic amount of
work in every PASSWORD attempt that it is not possible
to optimize. The enormous number of possible solutions
that can be reconstructed mathematically is the user's
surefire guarantee that nobody will manage to "crack" a
PASSWORD which has been specified for enciphering a
FLAMFILE even remotely easily. There is no such thing as
a higher-level PASSWORD that performs the role of a
master key. A PASSWORD which is hierarchically
structured from the user's point of view is not recognized
as such. Even the small difference between one blank
more or less at the end of the PASSWORD results in
completely different internal keys, which are what
ultimately determine the actual procedure (2 * 4 KB key
data internally).

If you then also give your PASSWORD an attribute that
refers to your company or to some other feature of your
environment, and thus extend the PASSWORD length
artificially, the amount of effort needed by an outsider to
work it out will reach astronomical proportions:

If the full 512 binary bits are used, the total possible
number of variants will have 155 digits. Even if you only
want 96 printable characters to be allowed per byte, you
will still be left with a figure with 127 digits. The length
alone, which is part of the PASSWORD, is enough to put
other people off, because they have no specific
information about it.

Example of a PASSWORD with attributes:

C'limes datentechnik gmbh, Ruskbakercity
Friedrichsdorf/Ts.'

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

This makes 57 out of 64 bytes (between the two
apostrophes). As an alternative to "Ruskbakercity", we
could also take Huguenots, Mormons, Philipp Reis or any
other attribute that is typical of Friedrichsdorf in the
German Taunus region. The remainder (7 bytes in this
example) is used for the actual personal PASSWORD
(e.g. a blank followed by 6 bytes of variable binary code =
2.8 * 10**14 variants if the length, structure and attribute
are static).

With a PASSWORD such as that described above, and
without any personal modifications, you can create a
"company-specific", compressed FLAM file that can only
be decompressed within your company. Instead of "Ts."
you could also write "Taunus" or leave off this attribute
entirely and replace it with the zip code: "D-61381". Upper
or lower-case notation affects the binary code, as do any
structural changes. Be careful not to make input errors in
hidden dialogs or with lower-case letters on mainframes.

With PASSWORD enciphering you must allow an
additional 2.5% on average on top of the time for
compression/decompression with FLAM V3.0 and
MODE=ADC; this is an immense advantage simply on
account of the restriction to compressed data. The same
also applies to protection against hackers, as ownership of
FLAM V3.0 is an essential prerequisite of any "attack". In
addition, each compressed segment must be made
available, complete and undamaged, in the right
"envelope" (i.e. synchronized).

Our PC version is not available as shareware or in a
similar form, and we consider it a near-on impossibility for
anyone else to rewrite even the decompression part of the
program and - as is common practice on the Internet -
publish it "for private use" as their own, home-made
product. We have endeavored to achieve a healthy
measure of complexity to protect our own interests, apart
from anything else. Of course, we can never protect
ourselves 100% against pirate copies, nor against disloyal
employees with inside know-how. Yet even then, there is
no way that a person could secure any kind of advantage
whatsoever for themselves by attempting to "crack" a
PASSWORD. The non-optimizable portion of CPU time
would still remain, even if we were to publish the sources!
You determine this time yourself through the PASSWORD
rules you define within your company (see PS). Please
remember that there is an enormous difference between
wanting protection inside your company as well and
protection "just" against "unauthorized third parties", for
example when files are transferred. Somebody who
already works in the same building as you is likely to have
access to the data you are desperate to protect through
other sources too. This is a far more difficult problem to
solve.

The majority of FLAM's processes are automated. We
recommend saving the PASSWORD in a separate file and
then getting FLAM to read it via this file. You can protect
access to the file in the usual way.

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 1 Introduction

The parts of the syntax that are critical for synchronization
and positioning are neither enciphered nor encrypted in
FLAM. This data is of no use to anybody; it can however
help to speed up direct access considerably, since those
parts of the compressed file whose only interest to
authorized users is that they contain formatting
information do not need to be deciphered or decrypted,
nor do they have to be decompressed unnecessarily.

Some users may of course prefer to start by
"compressing, encrypting and sealing" with FLAM and
then use a stipulated enciphering technique. There is
nothing to be gained, on the other hand, by enciphering
the original data before compressing it with FLAM. It is
however useful to form signatures and other authorization
data relevant to the original before compressing it with
FLAM, providing you do not otherwise alter the original
data in doing so. The FLAMFILE can also be modified to
make it personal and incompatible by swapping bytes via
FLAM user exits. The effect is basically the same as
enciphering (symmetrical exit modules).

Instead of personal keys, you can also use ready-made
key systems with generation/administration functions, etc.;
these keys must be symmetrical for enciphering with
FLAM however (the same PASSWORD on both sides
from the binary point of view).

PS: If you would like to work out exactly how many
different PASSWORDs are possible, you must start with
the length in bits as a power with base "2" for purely
binary codes (X input); this number must be divisible by
"8" with no remainder, so that the input length is an integer
number of bytes. PASSWORDs in X format are always
invariable for heterogeneous applications.

In the case of PASSWORDs entered with C'...', it depends
how many characters are allowed. In ASCII, for instance,
there are 96 printable characters (not including extended
character sets). Only 52 of these characters are Roman
letters, while 10 are digits, etc., etc. If the PASSWORD
has a length of "k" bytes and there are up to "n"
permissible characters per byte, the total number of
variations will be "n**k" (power "k", base "n"). There will
always be a few "dregs" left over that an attacker will
exclude straight away. It is therefore important to choose a
length "k" with a sufficient margin (see example of
PASSWORD with attributes). A C PASSWORD often
depends to a very large extent on the character sets and
their binary conversion, e.g. if special characters or
umlauts are used! As far as FLAM is concerned, only the
binary conversion of the string that is transferred during
compression/enciphering with C'...' is relevant. This may
well be a different binary code on the very next screen.

FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Introduction Chapter 1

1.2 FLAM and AES

The National Institute of Standards (NIST) has defined the
Advanced Encryption Standard (AES) for encrypting
data. The method was described in the Federal
Information Processing Standard (FIPS-197) in November
2001 and approved effective May 26, 2002.

FLAM uses this algorithm for encrypting compressed data.
Keys of up to 64 characters can be specified (see also the
description of the PASSWORD parameter in version 3).
Internally, a key of 128 bits is derived (AES-128) and data
security is enhanced by the insertion of verification fields
created also with AES (hash-MACs).

This encryption method is activated by setting the
parameters CRYPTOMODE=AES and CRYPTOKEY=key
and is available with compression modes ADC and NDC
(MODE=ADC or MODE=NDC). With CRYPTOMODE=-
AES the compression mode defaults to ADC rather than
the mode specified in the default settings.

This fast algorithm, combined with the ADC compression,
enables the user to encrypt large amounts of data with a
worldwide accepted algorithm.

For further details see the manual FLAM & AES.

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 2:

Functions

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

Content

2. Functions 3

2.1 The FLAM Utility 3

2.1.1 File compression using FLAM 3

2.1.2 Decompression of files using FLAM 5

2.2 Subprogram FLAMUP 6

2.3 Interface on record level: FLAMREC 6

2.4 I/O User Interface 8

2.5 User exits 9

2.5.1 Original data input EXK10 9

2.5.2 Compressed data output EXK20 9

2.5.3 Original data output EXD10 9

2.5.4 Compressed data input EXD20 10

2.5.5 Key management KMEXIT 10

2.6 Bi-/serial compression with BIFLAMK 12

2.7 Bi-/serial decompression BIFLAMD 14

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

2. Functions

2.1 The FLAM Utility

FLAM is a utility that is able to compress and encrypt
whole files or to expand compressed and to decrypt files.

By using the parameters COMPRESS respectively
UNCOMPRESS/DECOMPRESS you select the operation
mode:

Compression of an uncompressed file or expansion of a
compressed file.

2.1.1 File compression using FLAM

As FLAM compresses a file it will write the result into a
sequential or index sequential file, the FLAMFILE. This file
may have a header that will store information about the
original file.

FLAM is able to process all PS, PO and VSAM files.

To adapt the compression process to the requirements of
the user, it is possible to specify parameters during the
program call interactively. It is also possible to define the
parameters using a parameter file or while generating the
system.

FLAM creates a job protocol for each execution (on
screen or into a log file).

During compression FLAM processes a set of 1-4095
(logical) records within one block (Matrix).

FLAM can process input and output from both disc and
magnetic tape or cartridge. This is also true for the
compressed file, the FLAMFILE.

FLAM always compresses a set of records in one step.
The size of the intermediate buffer can be specified via the
parameter MAXBUFFER. FLAM will read only as many
input records in one step as can be stored within the
intermediate buffer.

For compatibility reasons to all FLAM versions the size of
the intermediate buffer is restricted by 32 kB. However, if
the target computer (i.e., the computer on which the
compressed file will be decompressed) is known and the
FLAM version installed on this computer allows for it, a
bigger buffer size for optimal compression can be defined.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

It is also possible to restrict the number of records within
one set using the MAXRECORDS parameter. If you define
MAXRECORDS=1, FLAM will use a serial context free
compression method that is only useful with long records.

The typical compression ratios are usually achieved with
16-32 records within one set. With a bigger set a slightly
better compression ratio can be achieved (which also
leads to less CPU consumption!), but the intermediate
buffer has to be bigger.

The better the compression ratio is, the less CPU time is
needed!

The compression method is always the same - based on
the Frankenstein-Limes-Access-Method. Only the
treatment of the matrix columns and the representation of
the compressed files differs from case to case. This is
controlled with the MODE parameter.

With MODE=CX8 FLAM will only compress repeating
characters (horizontally and vertically). With MODE=VR8
the remaining data is compressed in addition using the
FL-B(4) code. This process first translates the characters
into a special 8-bit code and then homogenizes them
using specially designed logical operations. The results
are bit strings that can be compressed efficiently. One
reason for this is that the data resulting from the
Frankenstein-Limes-Access-Method can be grouped into
partial equal character classes.

In both cases, the compressed file, the FLAMFILE, is a
sequence of 8-bit combinations that are written into
sequential or index sequential files. Record size, record
format, block size can be defined by the user. Each record
of a file is in addition protected with a check sum. Code
conversions within the FLAMFILE are not allowed. During
transmission the file has to be treated as a binary file.

For files that contain only printable characters and shall be
transmitted using a 7-bit-line, FLAM offers MODE=CX7.
This mode creates a compressed file which will "behave"
during transmission in the same way as the
uncompressed file. FLAM does not check, if the original
file is suitable for transmission, but will create a
compressed file using a very restricted character set that
is neutral to the different code conversion utilities on the
marketplace.

Using this mode one can create compressed files that can
be converted from EBCDIC to ASCII and vice versa (e.g.,
during a file transfer).

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

However, it is necessary that the code conversion is
reversible without any changes. Otherwise FLAM will
signal a syntax error in the compressed file due to
differences in the byte numbers and will stop
decompression. Such cases are possible, if the original
file contains printer control characters or tabulator
characters, which are not converted 1:1.

Apart from this, code conversion can be performed
integrated with the compression step. FLAM offers the
possibility of code conversion (before compression, or
after decompression). Code conversion is controlled via
standard code tables or user defined code tables. For
special cases where a 1:1 code conversion is not possible
for all characters, user exits are provided.

2.1.2 Decompression of files using FLAM

FLAM reads a compressed file (FLAMFILE),
decompresses the content and writes the result into a
target file. FLAM automatically configures itself according
to the parameters (e.g., buffer size or record set size)
used during compression. The general layout of the
compressed file is described in a separate chapter.

FLAM version 2.7 can decompress all FLAMFILES
created with FLAM V1.0 - 2.6 (upward compatibility).
FLAM V2.0/ V2.1 can decompress sequential FLAMFILES
created with FLAM V2.5 - V2.7 (downward compatibility).

To adapt the decompression process to the requirements
of the user, it is possible to specify parameters during the
program call interactively. It is also possible to define the
parameters using a parameter file or while generating the
system.

FLAM creates a job protocol for each execution (on
screen or into a log file). During decompression the
characteristic parameters of the original files are restored
depending on the information in the file header.

By specifying certain parameters it is possible to generate
a target file differing from the original file. All conversions
are possible provided that the target system caters for the
appropriate access method.

That the FLAMFILE eventually was created in a different
environment (e.g., different operating system) lacks
influence on the operation of FLAM. Data is
decompressed into equivalent file formats or in user
defined file formats.

By specifying code conversion tables it is possible to
change code systems after compression.

To be even more flexible, FLAM provides user exits that
allow the user to apply user defined post processing.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

2.2 Subprogram FLAMUP

FLAMUP differs from FLAM in that respect, that it can be
called as a subprogram out of an application. All accesses
to data are performed via FLAMUP.

All parameters can be passed to FLAMUP using the CALL
interface or methods as provided by FLAM (interactive
parameter definition or parameter file) can be used.

Using FLAMUP within a driver program allows for example
to select a certain set of files and to
compress/decompress all the selected files in one step. A
typical example is, to select only files that were modified
after a certain date (archiving).

2.3 Interface on record level: FLAMREC

The Frankenstein-Limes-Access-Method as a hardware
and operating system independent and compressing
access method is realized via the record level interface.

This interface allows sequential, relative or index
sequential access to individual records. These records
may be contained in compressed files stored on and
interchanged between different devices and different
operating systems.

The record level interface is provided by a set of different
subprograms that may be called from all programming
languages such as COBOL, FORTRAN, C, and from
ASSEMBLER.

These subprograms are identical on all those operating
systems where FLAM was released.

FLMCLS FLMCLS (Close) closes the current processing after all
records have been received with FLMPUT, or after all
records have been read for decompression.

FLMDEL FLMDEL (Delete) deletes the last read record from an
index sequential FLAMFILE.

FLMFKY FLMFKY (Find Key) positions the record pointer in an
index sequential FLAMFILE (that has been created from
an index sequential file) in such a way that the record with
the specified or the following key can be read when
FLMGET is subsequently activated.

FLMFLU FLMFLU (Flush) writes any compressed data left over
from the last records transferred for compressoin and still
present in the memory of the FLAMFILE and requests the
statistical data. In contrast to FLMCLS, the FLAMFILE is
not closed, i.e. another piece of compressed data can be
appended.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

FLMFRN FLMFRN (Find Record Number) positions the record
pointer in an index sequential FLAMFILE (that has been
created from a relative or sequential file) in such a way
that the record with the specified record number can be
read when FLMGET is subsequently activated.

FLMGET FLMGET (Get Record) reads one and only one
decompressed record from a specified buffer.

FLMGHD Using FLMGHD (Get File Header) all header information
containing the file format of the original file can be read. If
more than one file header is contained in the compressed
file, the information is valid for that records that are read
next (FLMGET, FLMLOC).

FLMGKY With FLMGKY (Get KEY) it is possible to read a record by
key out of an index sequential FLAMFILE. In addition the
record pointer is positioned to the record with the nearest
greater key to allow sequential read with FLMGET or
FLMLOC.

FLMGRN FLMGRN (Get Record Number) reads the record with the
specified record number from an index sequential
FLAMFILE that has been created from a relative or
sequential file.

FLMGTR FLMGTR (Get Reverse) reads the next decompressed
original record, progressing towards the start of the file,
into a specified buffer.

FLMGUH Information that has been added to the compressed data
with FLMPUH during compression can be read by means
of FLMGUH (Get User Header) during decompression.

FLMIKY With FLMIKY (Insert Key) a new record with new key will
be taken on into the compressed file. The indicated key
must not exist in the file.

FLMLCR FLMLCR (Locate Reverse) reads the next decompressed
original record towards the beginning of the file in Locate
Mode.

FLMLOC Instead of FLMGET function FLMLOC can be used to
access to a decompressed record. FLMLOC will not pass
a record to the caller, but an address pointer to the record.

FLMOPN The function FLMOPN (Open) has been partitioned into
three subfunctions (FLMOPN, FLMOPD, FLMOPF)
because of the large number of parameters. FLMOPN
caters for the basic parameters (e.g.,
Compression/Decompression). FLMOPD defines the file
formats of the FLAMFILE. FLMOPF defines the
compression parameters. If the FLMOPD and FLMOPF
subfunctions are not put to use, fixed values are used.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

FLMPHD Function FLMPHD (Put File Header) will use its
parameters to create a file header. The file header
describes the format of the original file. The file header is
valid for all following records from the original file received
with FLMPUT until processing is closed or function
FLMPHD is called again.

FLMPKY With FLMPKY (Put Key) it is possible to insert or update a
record by key within an index sequential FLAMFILE.

FLMPOS FLMPOS (Position) is used for relative positioning in any
file and for creating gaps when writing relative files.

FLMPUH FLMPUH (Put User Header) can be used to append
another character string of any content to the information
stored with FLMPHD. It can only be called immediately
after FLMPHD has been called.

FLMPUT FLMPUT (Put Record) passes one record of the original
file to FLAM.

FLMPWD FLMPWD gives in a password to FLAM for compression
or decompression.

FLMQRY FLMQRY asks for special parameter that are not returned
in other calls.

FLMSET FLMSET sets special parameter that are not set by other
calls.

FLMUPD FLMUPD (Update) updates the last record read from an

index sequential FLAMFILE.

2.4 I/O User Interface

This interface allows the user to integrate own access
methods into FLAM.

One possibility is to pass the compressed records
immediately to postprocessing routines without creating a
compressed file. Vice versa, during decompression the
compressed records may be received from a preprocess
instead of reading them from a file.

A direct application could be the integration of FLAM with
a file transfer application avoiding the creation of
intermediate files.

Generally this interface allows to intercept all input and
output data of both FLAM and FLAMUP. This allows the
user to adapt FLAM easily to specific access methods.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

2.5 User exits

2.5.1 Original data input EXK10

This user exit interfaces the record passed to FLAM for
compression.

Special processing can be defined for: Start of file, record
level, end of file. Records can be passed on, modified,
deleted or inserted. This exit can be used to modify
records in a structure dependent way.

EXK10 is only available in FLAM and FLAMUP and
corresponds with EXD10 during decompression.

2.5.2 Compressed data output EXK20

This exit interfaces the compressed data before it is
written into the FLAMFILE.

Special processing can be defined for: Start of file, record
level, end of file. This exit can be used to modify records
in a structure independent way.

With this exit it is possible, to modify the data with an own
encryption routine, or a special code translation can be
applied if a non-transparent file transmission method shall
be used.It is possible to insert own records in front of the
compressed records, for example archiving control
records or origin information.

Another possibility is the extension of records to append
specific revision information.

EXK20 is available in FLAM, FLAMUP and FLAMREC and
corresponds with EXD20 during decompression.

2.5.3 Original data output EXD10

This exit interface the decompressed record immediately
before it is written into the target file.

Special processing can be defined for: Start of file, record
level, end of file. Records can be passed on, modified,
deleted or inserted. This exit can be used to modify
records in a structure dependent way.

EXD10 is only available in FLAM and FLAMUP and
corresponds with EXK10 during compression.

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

2.5.4 Compressed data input EXD20

This user exit interfaces the compressed data immediately
after it is read from the FLAMFILE.

Special processing can be defined for: Start of file, record
level, end of file. This exit can be used to modify records
in a structure independent way.

With this exit it is possible, to decrypt the data with an own
decryption routine or to apply the reverse code translation
as used during compression.

For a proper operation of FLAM it is indispensable that all
changes applied to the compressed data are reversible.
User exit EXD20 must deliver exactly the same data as
user exit EXK20 received. All modifications applied to
compressed data with EXK20 must be undone with
EXD20.

EXD20 is available in FLAM, FLAMUP and FLAMREC
and corresponds with EXK20 during decompression.

2.5.4 Compressed data input EXD20

This user exit interfaces the compressed data immediately
after it is read from the FLAMFILE.

Special processing can be defined for: Start of file, record
level, end of file. This exit can be used to modify records
in a structure independent way.

With this exit it is possible, to decrypt the data with an own
decryption routine or to apply the reverse code translation
as used during compression.

For a proper operation of FLAM it is indispensable that all
changes applied to the compressed data are reversible.
User exit EXD20 must deliver exactly the same data as
user exit EXK20 received. All modifications applied to
compressed data with EXK20 must be undone with
EXD20.

EXD20 is available in FLAM, FLAMUP and FLAMREC
and corresponds with EXK20 during decompression.

2.5.5 Key management KMEXIT

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

This user exit returns a key to the FLAM utility for
en-/decryption of a FLAMFILE.

So it is possible to enter any PASWORD/CRYPTOKEY in
a secure way without notice to the JCL or the protocol.

This exit is implemented as an interface to special key
management systems, without influence to the FLAM
utility programs.

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

2.6 Bi-/serial compression with BIFLAMK

Bi-/serial compression does not employ FL-Matrices. The
compression effect is achieved by comparing the original
data with a sample and/or by using serial compression
techniques.

BIFLAMK works synchronously. Each call results
immediately in output data. It does not need a memory-
compression is done on a call-by-call or record-by-record
basis. Bi-/serial compression is especially suitable for
integration into other products or applications.

The compression effect is considerably lower than with the
compression using the FL-matrix. The advantage is the
independence of each record. In many environments is
this independency a necessary requirement for
integration.

BIFLAMK offers beside compression two more functions
that become more and more important as requirements for
data security and data integrity are rising. All compressed
records are encrypted and protected against modification
using checksums over both original and compressed file.

BIFLAMK offers several compression modes that can be
selected via a function code.

First, a vanilla serial compression mode is provided that
does not require a sample record. All compressed records
are independent from each other and can be
decompressed individually.

Second, a bi-serial mode is provided that can be adapted
to different environments. This compression mode is
based on a comparison of the record with a sample record
byte by byte.

The result is a bitmap that denotes all positions where
characters are equal and the remaining differing
characters.

The first option allows to control the postprocessing of the
remainder. A serial compression can be applied to the
remainder or the remainder is simply encrypted.

The serial compression of the remainder can be bypassed
if the CPU-overhead is considered too high or the
compression ratio is satisfactory.

The second option controls the processing of the sample.
If a dynamic sample is used a checksum is computed for
each sample record and is inserted into the compressed
record. This reduces slightly the compression effect and
increases CPU overhead. On the other hand data security
is improved because modifications are detected more
easily. For an exact error analysis it is even possible to
decide whether the compressed record or the sample has

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 2 Functions

been modified. If a static sample is used, no checksum of
the sample is computed. Modifications in the sample can
in this case only be detected by using the checksum over
the original file.

The third option allows the storage of samples within the
compressed file. During decompression these records are
restored again as samples. With this method BIFLAMK
can create sequences of records that can be
decompressed by BIFLAMD without additional information
(samples).

One possibility would be to provide one sample first. Then
all records are compressed against this sample and bi-
serial compression is used to compress the remainders as
well.

Another possibility is to use dynamic samples by using the
processor of each record as the sample for the current
record. This sequence result in good compression ratios if
adjoining records are similar (Reports, data entry lists).
The disadvantage is, that the individual records are not
independent from each other. This sequence must be
decompressed as a whole. However, additional
information (like samples) is not necessary.

It does not make much sense, to use a different sample
for each record. Sample records can only be compressed
with simple serial compression. In addition the
compressed data of the original data has to be stored as
well.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Functions Chapter 2

2.7 Bi-/serial decompression BIFLAMD

BIFLAMD decompresses compressed records created
with BIFLAMK.

For the serial decompression no sample record (including
length) is used. This implies that BIFLAMD has to
parameters less. Therefore it is necessary to inform
BIFLAMD during the call, which mode (serial or bi-serial)
shall be used for decompression.

For a proper decompression it is necessary that BIFLAMD
receives exactly the same compressed records and
sample records as created with BIFLAMK. Modification
(Code translations) must not be applied to the
compressed data and the sample records. If compressed
data shall be transmitted between different computer the
file transmission must be transparent.

BIFLAMD automatically detects if a record was
compressed serial or bi-serial and will report an error
message, if the compression syntax does not correspond
with the call function code. Also modifications in
compressed data, sample records and original data are
detected via the check sums.

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 3:

Interfaces

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Content

3. Interfaces 3

3.1 FLAM Utility 3

3.1.1 Parameters 4

3.1.2 JCL for FLAM 39

3.1.3 Condition Codes 44

3.1.4 File names 45

3.1.4.1 File name list 45

3.1.4.2 Wildcard syntax 46

3.1.4.3 Selection rule for decompression 48

3.1.4.4 Conversion rule 49

3.2 Subprogram interface FLAMUP 53

3.3 Record level interface FLAMREC 56

3.3.1 Function FLMOPN 66

3.3.2 Function FLMOPD 67

3.3.3 Function FLMOPF 69

3.3.4 Function FLMCLS 71

3.3.5 Function FLMDEL 72

3.3.6 Function FLMDEL 73

3.3.7 Function FLMFKY 74

3.3.8 Function FLMFLU 75

3.3.9 Function FLMFRN 76

3.3.10 Function FLMGET 77

3.3.11 Function FLMGHD 78

3.3.12 Function FLMGKY 80

3.3.13 Function FLMGRN 81

3.3.14 Function FLMGTR 82

3.3.15 Function FLMGUH 83

3.3.16 Function FLMIKY 84

3.3.17 Function FLMLCR 85

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.18 Function FLMLOC 86

3.3.19 Function FLMPHD 87

3.3.20 Function FLMPKY 89

3.3.21 Function FLMPOS 90

3.3.22 Function FLMPUH 91

3.3.23 Function FLMPUT 92

3.3.24 Function FLMPWD 93

3.3.25 Function FLMQRY 94

3.3.26 Function FLMSET 96

3.3.27 Function FLMUPD 98

3.4 User I/O interface 99

3.4.1 Function USROPN 100

3.4.2 Function USRCLS 102

3.4.3 Function USRGET 102

3.4.4 Function USRPUT 103

3.4.5 Function USRGKY 103

3.4.6 Function USRPOS 104

3.4.7 Function USRPKY 104

3.4.8 Function USRDEL 105

3.5 User exits 106

3.5.1 Input original data EXK10 106

3.5.2 Output compressed data EXK20 108

3.5.3 Output original data EXD10 110

3.5.4 Input compressed data EXD20 112

3.5.5 Key management KMEXIT 114

3.6 Bi-/serial compression BIFLAMK 116

3.7 Bi-/serial decompression BIFLAMD 118

3.8 Utilities 124

3.8.1 FLAMCKV 124

3.8.2 FLAMCTAB 127

3.8.3 FLAMDIR 129

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3. Interfaces

FLAM provides a set of interfaces that allow the use of the
product within different environments and for different
applications.

The simplest application is the execution of FLAM via the
EXEC command. This allows to compress or decompress
complete files.

In addition FLAM provides a set of subprogram interfaces
for integration with other programs and products. This
allows also to develop tailored applications where FLAM is
embedded in dedicated control programs.

User exits provide the pre- and postprocessing of the
original data as well as of the compressed data without
the additional step via intermediate files.

All interfaces are designed in regard to higher level
programming languages like COBOL. Only in cases where
the usage of address pointers is a conditio sine qua non,
assembler (or equivalent, e.g. C) interfaces must be used.

3.1 FLAM Utility

FLAM is able to compress complete files and to
reconstruct complete files from compressed data.

For original files all file and record formats of type PS, PO
or VSAM for disc or tape are supported.

The user interface for file IO (DEVICE=USER) allows to
support additional access methods.

The user exits allow to pre- and post process original data
as well as compressed data. The user exits are
implemented as subprograms that are loaded dynamically
during execution time from a module library (STEPLIB).

Using predefined or dynamically loaded conversion tables,
character conversion can be applied to the original data.

It is possible to change file and record formats during
decompression. Conversion from variable to fixed format
or from sequential to index sequential organization is
possible. The compressed data (FLAMFILE) can be
stored in sequential or index sequential format in any
record or file format. The record and file format of the
compressed data is independent from the record and file
format of the original data. An index sequential FLAMFILE
provides efficient random access to original data by using
the record level interface. At the other hand, sequential
organization of the FLAMFILE is better suited for file

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

transfer between computers with different operating
systems.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

FLAM compressed data is always heterogeneously
compatible. This means that compressed data, which was
generated under a certain operating system, can be
decompressed on all operating systems supported by
FLAM. Depending on the available record and file formats
on the target systems, record and file conversions may be
necessary.

FLAM can be executed online as well as in batch. It can
be adapted in a flexible way to the requirements of the
users. Several parameters are supplied for this purpose.

These parameters may be entered or may be stored via
the PARM interface. An additional parameter file is also
possible. Default values for the parameters may be
created during installation (see: Generation of Default
Values). File attributes can be also defined via the DD
command.

During processing, parameters are evaluated in the
following sequence:

First the installation parameters are used.

During decompression this values are substituted by the
values from the file header of the FLAMFILE, if available.

Then the values from the parameter file are used.

The input PARM in the EXEC statement overwrites these
values.

File attributes defined in the DD or ALLOCATE command
overwrite again.

According to this hierarchy, a very flexible mode of
operation is possible. Please be aware that the sequence
is not always chronological:

E.g., it is possible to select a parameter file via PARM
input. This parameter file is read in after the input despite
of the fact, that the PARM inputs will overwrite the
specifications of the parameter file.

3.1.1 Parameters

Independently from the input medium, parameters are
evaluated always using the same syntax. Only upper case
letters are allowed. Parameters may be passed in one or
more lines or records. In each line the parameter
interpretation ends with the first blank position. After the
blank any type of comment may follow. Single parameters
must not be separated by end of line.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Evaluation of the parameters is ended at the keyword
END or by an empty input line (length = 0) or by EOF for
the input medium.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

There are parameters with or without key words. Key
words and values can be abbreviated. Within brackets []
alternative key words are presented as used in other
operating systems (MVS, DOS/VSE, BS2000). Key words
from previous versions are presented within sharp
brackets. This key words should not be used any longer.

Because of compatibility reasons all parameters are
presented although not all parameters are evaluated
under MVS.

Key word parameters can be specified in two different
modes as usual under MVS:

parameter0,parameter1=value1,parameter2=value2
,...

or:

parameter0,parameter1(value1),parameter2(value2),...

A string value (file names, module names, password, ...)
may be passed as C’.....’ (characters) or X’....’
(hexadecimal).

All string parameters are assigned with blanks if
"(NONE)" or no value is specified:

parameter=(NONE), or parameter(NONE),...

or:

parameter=,... or parameter(),...

The sequence of parameters is arbitrary if not otherwise
specified.

Only parameters that differ from the default values must
be specified.

In the following we describe all parameters in alphabetic
order:

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Parameter may be abbreviated as long as they stay
unique. Otherwise the first matching entry of the following
summary is used.

ACCESS Access method for the input or output file.

ACC Possible values:

LOG logical access by record

PHY physical access by block

MIX physical access by block with
resolution into records

Default: LOG

Valid for: compression, decompression

Note: Ignored under MVS.

All files are read and written logically.

BLKSIZE Logical block length for compressed file.

BLKS Possible values:

0 - 32760

Default: 0 bytes

Valid for: compression, decompression

Note: This parameter is not necessary for catalogued files
in MVS.
A value of zero leads to a system determined blocksize.

CLIMIT Minimal compression in per cent

CLI Possible values:

0 - 90

Default: 0 no limit

Valid for: compression

Note: If the compression result is worse than the
predefined limit, FLAM will generate a message and will
set condition code 80.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

The compression is finished properly anyway. This
parameter is only evaluated for INFO=YES.

CLOSDISP Final processing for compressed file on tape.

CLO Possible values:

REWIND Rewind of tape to tape start.

UNLOAD Rewind of tape and unload.

LEAVE No rewind.

Default: REWIND.

Valid for: compression, decompression

Note: Currently ignored.

Control of final processing may be done via JCL (DD
card).

COMMENT A comment to the FLAMILE.

COMM Will be stored into the user header of the FLAMFILE.

Possible values:

1 - 256 characters starting with A'...', C’...’, X'...' or a string

Using A’..’ all characters are translated to ASCII with the
internal translation table A/E (ch. A).

Default: No comment

Valid for: compression

COMPRESS Compress

C
No values

Valid for: compression

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

CRYPTOKEY Key to encrypt or decrypt a FLAMFILE

CRYPTOK This parameter activates the crytographic method, entered
with parameter CRYPTOMODE.

Possible values:

1 - 64 characters starting with A'...', C’...’, X'...' or a string

Using A’..’ all characters are translated to ASCII with the
internal translation table A/E (ch. A).

Default: no key

Valid for: compression, decompression

Note: Please take care of the different code tables or
national character sets used on the different platforms.

E.g. using the password FLAM both on Windows systems
(ASCII) and on MVS (EBCDIC) leads to a password error.
You have to pass X’464C414D20’ (this is ‘FLAM ‘ in
ASCII) or A’FLAM’ on MVS instead.

We recommend to use the hex input for a heterogeneous
environment.

CRYPTOMODE Choose the algorithm for encryption.

CRYPTOM Possible values:

AES Advanced Encryption Standard

FLAM the internal FLAM algorithm

Default: FLAM

Valid for: Compression.

Note: AES was introduced in FLAM V4.0 and is not
compatible to older versions.

The encryption will be activated by the parameter
CRYPTOKEY. The encryption mode is stored in the
FLAMFILE, only the key is necessary on decompression
and decryption.

Encryption implies MODE=ADC or NDC. Without entering
a MODE-parameter ADC is used.

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

DATACLAS Data storage class for allocation of the FLAMFILE.

DATAC Possible values:

name name of the SMS data storage class

Default: none

Valid for: compression

DECOMPRESS Decompression.

D [UNCOMPRESS]

No values

Valid for: decompression

DEVICE Assignment of device assignment for compressed file.

DEV Possible values:

DISK disc unit

TAPE tape unit

FLOPPY floppy disc drive

STREAMER tape streamer

USER user specific I/O

Default: DISK

Valid for: compression, decompression

Note: This parameter is not needed for catalogued files
under MVS. The device type is automatically assigned by
the operating system.

If the user exit for I/O shall be activated, DEVICE=USER
must be specified (see also: User I/O interface).

DISPA Abnormal disposition of the FLAMFILE (see MVS JCL-
manual).

DISPA Possible values:

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

CATLG catalog

DELETE delete

KEEP keep

UNCATLG uncatalog

Default: none

Valid for: compression, decompression

Note: This parameter is ignored when the FLAMFILE is
allocated via JCL.

DISPN Normal disposition of the FLAMFILE (see MVS JCL-
manual).

DISPN Possible values:

CATLG catalog

DELETE delete

KEEP keep

UNCATLG uncatalog

Default: none

Valid for: compression, decompression

Note: This parameter is ignored when the FLAMFILE is
allocated via JCL.

DISPS DISP-Status of the FLAMFILE (see MVS JCL manual).

DISPS possible values:

SHR shareable

OLD exclusiv

MOD extend

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

NEW new file

Default: SHR for input, OLD or NEW on output

Valid for: compression, decompression

Note: This parameter is ignored when the FLAMFILE is
allocated via JCL. FLAM recognizes itself if a file is new or
cataloged (old).

DSORG File organization for compressed file.

DS [FCBTYPE]

Possible values:

PS sequential

ESDS VSAM-ESDS

KSDS VSAM-KSDS

LDS VDSAM-LDS

RRDS VSAM-RRDS

Default: PS

Valid for: compression

Note: If the compressed file shall be generated as index
sequential file, a VSAM-KSDS-file must be created.

EXD10 Activate user exit for processing decompressed data.

EXD1 Possible values:

name name of the module (max. 8
characters)

Default: no user exit

Valid for: decompression

The module is loaded dynamically.

EXD20 Activate user exit for processing compressed data.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

EXD2 Possible values:

name name of the module (max. 8
characters)

Default: no user exit

Valid for: decompression

The module is loaded dynamically.

EXK10 Activate user exit for processing original data.

EXK1 Possible values:

Name name of the module (max. 8
characters)

Default: no user exit

Valid for: compression

The module is loaded dynamically.

EXK20 Activate user exit for processing compressed data.

EXK2 Possible values:

name name of the module (max. 8
characters)

Default: no user exit

Valid for: compression

The module is loaded dynamically.

FILEINFO Transfer file name of original into file header.

FI Possible values:

YES Transfer file name of original into/out
of FLAM file header.

NO Don't transfer file name (when
compression). On decompression, a
file name is generated (FILE0001-
FILE9999) which can be used for
conversion rules.

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Default: YES

Valid for: compression, decompression

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

FLAMCODE Code for FLAM syntax.

FLAMC Possible values:

EBCDIC FLAM syntax is created in EBCDIC
code.

ASCII FLAM syntax is created in ASCII
code.

Default: EBCDIC

Valid for: compression

Note: If the original data are in ASCII character code, a
better compression ratio is obtained using FLAMCO-
DE=ASCII.

FLAMDDN Symbolic file name for compressed file.

FLAMD [FLAMLINK]

Possible values:

DD-NAME with max. 8 characters

> DD-NAME with max. 7 characters (decompression)

Default: FLAMFILE

Valid for: compression, decompression

Note: This parameter allows to change the DD name of
the DD command. For decompression, '>' before the DD
name means the file contains a list of FLAMFILE names.

FLAMFILE File name for compressed file.

FL Possible values:

File name with max. 54 characters.

> File name with max. 53 characters.

*DUMMY

Default: no name

Valid for: compression, decompression

Note: Specifying the file name is an alternative to
assigning the file by means of a DD statement. The

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

specification can contain a conversion rule for file names
(see chapter 3.1.4). The name can be specified in
wildcard syntax for decompression.

A '>' before the file name means the file contains a list of
files to be decompressed.

*DUMMY acts like the DD-statement //.. DD DUMMY

FLAMIN File name for the input file.

FLAMI Possible values:

File name with max. 54 characters.

> File name with max. 53 characters.

*DUMMY

Default: no name

Valid for: compression

Note: Specifying the file name is an alternative to
assigning the file by means of a DD statement. The file
name can be specified in wildcard syntax (see chapter
3.1.4).

A '>' before the file name means the file contains a list of
files to be decompressed.

*DUMMY acts like the DD-statement //.. DD DUMMY

FLAMOUT File name for the output file.

FLAMO Possible values:

File name with max. 54 characters

*DUMMY

Default: no name

Valid for: decompression

Note: Specifying the file name is an alternative to
assigning the file by means of a DD statement. The
specification can contain a conversion rule for file names
(see chapter 3.1.4).

*DUMMY acts like the DD-statement //.. DD DUMMY

HEADER Create file header.
FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

HE Possible values:

YES Create file header.

NO Don't create file header.

Default: YES

Valid for: compression

Note: The header consists of three parts. The first part is
independent from the operating system and contains file
attributes that are compatible. The second part depends
on the operating system and contains file attributes
specific for the according operating system. The third part
is optional and contains the file name when specified with
the parameter FILEINFO.

FLAM and FLAMUP evaluate the file header in order to
create a file with the most similar characteristics. The
simplest case is when the file is reconstructed in the
original system environment. In this case the second
(operating system specific) part of the file header can be
used. In all other cases only the first part can be used and
the system neutral attributes are mapped on system
specific attributes of the target environment.

HELP Help, output parameters.

No values.

Valid for: compression, decompression

Note: If the Help function is requested in the first input
line, the generated FLAM parameters and their values are
output and the program is then terminated.

IBLKSIZE Logical block length for the input file.

IBLK Possible values:

0 - 32760

Default: 32760 byte

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS.

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

ICLOSDISP Final processing for tape input file.

ICLO Possible values:

REWIND Rewind to tape start.

UNLOAD Rewind and unload tape.

LEAVE No rewind.

Default: REWIND

Valid for: compression

Note: Currently ignored. Control of final processing may
be done via JCL (DD card).

IDDN Symbolic file name for the input file

[ILINK]

Possible values:

DD-NAME with max. 8 characters

> DD-NAME with max. 7 characters

Default: FLAMIN

Valid for: compression

Note: This parameter allows to change the DD-NAME of
the DD command.

A '>' before the file name means the file contains a list of
files to be compressed.

IDEVICE Device assignment for input file.

IDEV Possible values:

DISK disc unit

TAPE tape unit

FLOPPY floppy disc drive

STREAMER tape streamer

USER User specific I/O

FLAM V4.5 (MVS) 19
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Default: DISK

Valid for: compression

Note: This parameter is not needed for catalogued files
under MVS. The device type is automatically assigned by
the DMS. If the user exit for I/O shall be activated,
DEVICE=USER must be specified (see also: User I/O
interface).

IDSORG File organization for input file.

[IFCBTYPE]

Possible values:

PS sequential

ESDS VSAM-ESDS

KSDS VSAM-KSDS

LDS VSAM-LDS

RRDS VSAM-RRDS

Default: PS

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS.

IKEYLEN Key length of input file.

IKEYL Possible values:

0, 1 - 255

Default: No key

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS. The key length specified in the catalogue is used.

IKEYPOS Key position of input file.

IKEYP Possible values:

20 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

0, 1 - (record length minus key length)

Default: 1 if key exists, 0 otherwise

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS. The key position specified in the catalogue is
used.

FLAM defines the position of the record key always as the
relative position within the record data part - independently
from the specific properties of the operating system. The
first byte has position 1.

INFO Control of protocol.

I Possible values:

YES Messages and statistics - generate
and display.

NO Don't display messages.

HOLD Display the parameters for
compression or decompression but
do not execute compression or
decompression.

Default: YES

Valid for: compression, decompression

Note: The INFO parameter should be contained in the first
input line. Otherwise it has no effect on displaying the
parameter inputs. The statistics inform about elapsed time
and CPU time needed. Also the number of bytes and
records for both input and output is computed. If relative
files are decompressed the number of records after the
removal of gaps is computed in addition. For conversion
into fixed record format the resulting number of bytes is
displayed.

INFO has been replaced by the more powerful parameter
SHOW.

IRECDEL Record delimiter for input original file.

IREC Possible values:

String of up to 4 characters.

Default: no record delimiter
FLAM V4.5 (MVS) 21
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Valid for: compression

Note: Is not evaluated by FLAM under MVS.

IRECFM Record format for input file.

[IRECFORM]

Possible values:

F fix record length

V variable record length

U record length undefined

FB fix blocked

VB variable blocked

VBS variable spanned

FBS fix standard

Default: VB variable blocked record format

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS.

IRECFORM Record format for input file.

IRECF [IRECFM]

Possible values:

FIX fix record length

VAR variable record length

UNDEF record length undefined

FIXBLK fix blocked

VARBLK variable blocked

VARSPAN variable spanned

FIXS fix standard

Default: VARBLK variable blocked record format

22 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS.

IRECSIZE Record length of input file (true lenght, without record
length field.)

IRECS [ILRECL]

Possible values:

0 - 32760

Default: 32752

Valid for: compression

Note: This parameter is not necessary for catalogued files
in MVS.

KEYDISP Key processing during decompression.

KEYD
OLD The records of the original file are

reconstructed as they were read in
(key + data).

DEL If the original file has a key length
unequal 0, the key is removed.

NEW If the output file has a key length
unequal 0, a key is generated at the
key position in the specified key
length. The key is generated from a
record sequence number (16
characters max.).

Default: OLD

Valid for: decompression

Note: This parameter allows or simplifies the automatic
conversion of sequential files into index sequential files
and vice versa.

KEYLEN Key length of an index sequential compressed file.

KEYL Possible values:

0, 1 - 255

FLAM V4.5 (MVS) 23
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Default: 0 (no key)

Valid for: compression, decompression

Note: In an index sequential compressed file the key must
be positioned at the beginning of the record. The key
length should be equal to the sum of the length of all
partial keys of the original file + 1. However, it is allowed to
violate this rule.If sequential data is compressed into an
index sequential compressed file, a key length of 5 bytes
is sufficient.

24 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

KMEXIT Activate the key management exit.

KME Possible values:

name name of the module (max. 8
characters)

Default: no user exit

Valid for: en-/decryption

The module is loaded dynamically.

Note: This Parameter overrules CRYPTOKEY

KMPARM Parameter used for the KMEXIT.

KMP Possible values:

Any input up to 256 characters in the form
A’...’, C’...’, X’...’, or as a string.

Default: no parameter

Valid for: en-/decryption

Note: This parameter overrules COMMENT, if any.

MAXBUFFER Maximum size of matrix.

MAXB Either a value between 0 and 7

or the matrix size in kBytes:

Minimal value: 8, maximal value: 2047

The value is rounded upwards according to the following

table:

FLAM V4.5 (MVS) 25
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

value: 0 1 2 3 4 5 6 7

kByte: 32 32 64 128 256 512 1024 2048

8 10 12 14 16

32 48 64 80 96 112 128 144

176 224 256 288 320 352 384 416

512 640 768 896 1024 1536 2048

Interfaces Chapter 3

or matrix size in bytes:

Minimal value: 2048

This value ist rounded upwards by kBytes according to the
following table or is rounded downwards to 2560 kBytes:

default: 64 kByte

Valid for: compression, mode=cx7,cx8,vr8

Note: Because during decompression a buffer of the
same size as during compression is needed, the
compressed file is only heterogeneously compatible, if this
buffer size is valid on the target system.

ADC/NDC use 64 kb, unchangeable.

The information is stored into the FLAMFILE, so it is well
known during decompression.

MAXRECORDS Maximum number of records for compression in one
matrix.

MAXR Possible values:

1 - 255 MO=CX7/CX8/VR8

26 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

2 4 6 8 10 12 14 16

32 48 64 80 96 112 128 144

176 224 256 288 320 352 384 416

512 640 768 896 1024 1536 2048 2560

Chapter 3 Interfaces

1 - 4095 MO=ADC

Default: 255, 4095 depending on MODE

Valid for: compression

MAXSIZE Maximum record length for compressed file.

(Net (true), without record length fields)

MAXS Possible values:

80 - 32760

Default: 512 bytes

Valid for: compression

Note: The record length of the compressed file is
independent from the record length of the original file. This
parameter should be chosen according only to the aspect
of efficiency and functionality. To avoid padding in blocks,
for fixed record length the block length should be a
multiple of the record length.

File transfer may require other record length (e.g.: 80
bytes fix for RJE (IBM) or 2036 bytes fix for transfer
between SINIX and BS2000 with FT-BS2000).

MGMTCLAS Management class for allocation of the FLAMFILE.

MGMTC Possible values:

name name of the SMS management class

Default: none

Valid for: compression

MODE Compression mode.

MO Possible values:

ADC 8 bit compression of highest efficiency

CX7 transformable 7 bit compression

CX8 8 bit compression (CPU time optimised)

VR8 8 bit compression (space optimised)

FLAM V4.5 (MVS) 27
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Default: VR8

Valid for: compression

Note: The compression mode is especially important for
file transfer. For local use only the 8 bit modes should be
used (ADC/CX8/VR8) for better efficiency.

For file transfer on transparent lines also the 8 bit modes
should be used. For compressed text data (only printable
characters - no control or tab characters) shall be
transferred via non transparent lines the 7 bit mode (CX7)
is appropriate.

MSGDDN Symbolic file name for message file.

MSGD [MSGLINK]

Possible values:

DD-NAME with max. 8 characters.

Default: FLPRINT

Valid for: compression, decompression

Note: With this parameter the DD-NAME in the DD
command can be changed.

MSGDISP Device selection for message output.

MSGD Possible values:

TERMINAL Currently not supported.

MSGFILE Output into List file.

SYSTEM Output on console with WTO,
ROUTCDE=11

Default: MSGFILE

Valid for: compression, decompression

Note: The MSGDISP parameter should be contained in
the first input line. Otherwise it has no effect.

MSGFILE File name for message file.

28 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

MSGF Possible values:

File name with max. 54 characters.

Default: no name

Valid for: compression, decompression

Note: Specifying the file name is an alternative to
allocating the file by means of a DD statement.

OBLKSIZE Block length of the output file.

OBLK Possible values: 0 - 32760

Default: 0

Valid for: decompression

Note: A value of zero leads to a system determined
blocksize for the output data set.

OCLOSDISP Final processing of tape output file.

OCLO Possible values:

REWIND Rewind to tape start.

UNLOAD Rewind and unload tape.

LEAVE No rewind.

Default: REWIND.

Valid for: decompression

Note: Currently not supported. Please use JCL (DD
statement) to control final processing.

ODATACLAS Data storage class for output file

ODATAC Possible values:

name name of the SMS data storage class

Default: none

FLAM V4.5 (MVS) 29
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Valid for: decompression

ODDN Symbolic file name for output file.

[OLINK]

Possible values:

DD-NAME with max. 8 characters.

Default: FLAMOUT

Valid for: decompression

Note: With this parameter the DD-NAME in the DD
command can be changed.

ODEVICE Device assignment for output file.

ODEV Possible values:

DISK disc unit

TAPE tape unit

FLOPPY floppy disc drive

STREAMER tape streamer

USER User I/O interface

Default: DISK

Valid for: decompression

Note: This parameter is not needed for catalogued files in
MVS.

If the user interface for I/O shall be activated, ODEVICE=
USER must be specified (see also: User I/O interface).

ODISPA Abnormal disposition of the FLAMOUT file (see MVS JCL-
manual).

ODISPA Possible values:

CATLG catalog

DELETE delete

30 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

KEEP keep

UNCATLG uncatalog

Default: none

Valid for: decompression

Note: This parameter is ignored when the file is allocated
via JCL.

ODISPN Normal disposition of the FLAMOUT file (see MVS JCL-
manual).

ODISPN Possible values:

CATLG catalog

DELETE delete

KEEP keep

UNCATLG uncatalog

Default: none

Valid for: decompression

Note: This parameter is ignored when the file is allocated
via JCL.

DISPS DISP-Status of the FLAMOUT file (see MVS JCL manual).

DISPS possible values:

SHR shareable

OLD exclusiv

MOD extend

NEW new file

Default: SHR for input, OLD or NEW on output

Valid for: decompression

FLAM V4.5 (MVS) 31
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Note: This parameter is ignored when the file is allocated
via JCL. FLAM recognizes itself if a file is new or
cataloged (old).

ODSORG File organization for output file.

ODSO [OFCBTYPE]

Possible values:

PS sequential

ESDS VSAM-ESDS

KSDS VSAM-KSDS

LDS VSAM-LDS

RRDS VSAM-RRDS

Default: PS

Valid for: compression

OKEYLEN Key length of output original file.

OKEYL Possible values:

0, 1 - 255

Default: 8 or the value from the file header

Valid for: decompression

Note: This value must only be specified if the key length
differs from the original file.

OKEYPOS Key position of output file.

OKEYP Possible values:

0, 1 - (record length minus key length)

Default: 1 or the value from the file header

Valid for: decompression

Note: This value must only be specified if the key length
differs from the original file. The position of the record key

32 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

is defined independently from the properties of a particular
operating system as the relative position within the data
part of the record. The first byte has position 1.

OMGMTCLAS Management class for allocation of the output file

OMGMTC Possible values:

name name of the SMS management class

Default: none

Valid for: decompression

ORECDEL Record delimiter for output original file.

ORECD Possible values:

String with max. 4 characters

Default: no record delimiter

Valid for: decompression

Note: Not evaluated by FLAM in MVS.

ORECFM Record format for output file.

Possible values:

F fixed record length

V variable record length

U undefined record length

FB fix blocked

VB variable blocked

VBS variable spanned

FBS fix standard

Default: VB or value from the file header

Valid for: decompression

FLAM V4.5 (MVS) 33
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Note: This value must only be specified if the record
format differs from the original file.

ORECFORM Record format for output file.

ORECF Possible values:

FIX fixed record length

VAR variable record length

UNDEF undefined record length

FIXBLK fix blocked

VARBLK variable blocked

VARSPAN variable spanned

FIXS fix standard

Default: VARBLK or value from the file header

Valid for: decompression

Note: This value must only be specified if the record
format differs from the original file.

ORECSIZE Record length of output file.

ORECS (True length without record length field.)

Possible values:

0 - 32760

Default: 32752 bytes or value from the file
header

Valid for: decompression

Note: This value must only be specified if the record
length differs from the original file.

OSPACE1 Primary space allocation of the output file in Megabytes

Possible values:

1 - 4095

34 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Default: 4

Valid for: decompression

Note: This value must only be specified if the FLAMFILE
is non z/OS compressed or you need a special value. A
z/OS FLAMFILE has stored the total space amount in the
file header and uses this value for allocation on
decompression..

OSPACE2 Secondary space allocation of the output file in Megabytes

Possible values:

1 – 4095

Default: 50

Valid for: decompression

OSTORCLAS Storage class for allocation of the output file

OSTORC Possible values:

name name of the SMS storage class

Default: none

Valid for: decompression

OUNIT Unit for allocation of the output file

Possible values:

name name of the unit (e.g. SYSDA, 3390)

Default: none

Valid for: decompression

FLAM V4.5 (MVS) 35
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

OVOLUME Volume for allocation of the output file

Possible values:

name name of the volume (e.g. SYSWK1)

Default: none

Valid for: decompression

PADCHAR Padding character for an output record

Possible values:

X’..’ a hex value X’00’ - X’FF’

C’.’ any character

Default: X’40’

Valid for: decompression

Note: This parameter is only used when an output record
has to be filled up during decompression (e.g. the original
variable record has to be converted to a fix output format).

PARDDN Symbolic file name for parameter file.

Possible values:

DD-NAME with max. 8 characters

Default: FLAMPAR

Valid for: compression, decompression

Note: This parameter allows to change DD-NAME in the
DD command. If no symbolic file name is specified for the
parameter file (PARDDN=(NONE)), FLAM will not try to
read from the parameter file. If the parameter file is not
existent or empty, no error is recorded.

PARFILE File name for parameter file.

PARF Possible values:

File name with max. 54 characters.

36 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Default: no name

Valid for: compression, decompression

Note: Specifying the file name is an alternative to
assigning the file by means of a DD statement. This file is
needed only if additional parameters are to be read from a
catalogued file.

PASSWORD Password used for en-/decryption (same as CRYPTOK).

PASSW Possible values:

Any input up to 64 characters (512 bit).

Default: no password

Valid for: compression, decompression

Note: Please take care of the different code tables or
national character sets used on the different platforms.

E.g. using the password C’FLAM ’ both on Windows
systems (ASCII) and on MVS (EBCDIC) leads to a
password error. You have to pass X’464C414D20’ (this is
‘FLAM ‘ in ASCII) on MVS instead.
We recommend to use the hex input for a heterogeneous
environment.

RECDEL Record delimiter for FLAMFILE.

RECD Possible values:

String with max. 4 characters.

Default: no record delimiter

Valid for: compression, decompression

Note: Not evaluated by FLAM under MVS.

RECFM Record format for FLAMFILE.

Possible values:

F fixed record length

V variable record length

U undefined record length

FLAM V4.5 (MVS) 37
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

FB fix blocked

VB variable blocked

VBS variable spanned

FBS fix standard

Default: FB

Valid for: compression, decompression

Note: The record format of the compressed file is
independent from the record format of the original file. Fix
blocked format is recommended.

RECFORM Record format for compressed file.

RECF Possible values:

FIX fixed record length

VAR variable record length

UNDEF undefined record length

FIXBLK fix blocked

VARBLK variable blocked

VARSPAN variable spanned

FIXS fix standard

Default: FIXBLK

Valid for: compression, decompression

Note: The record format of the compressed file is
independent from the record format of the original file. Fix
blocked format is recommended.

SECUREINFO Additional information stored in the FLAMFILE.

SEC Increasing the security of data. Changing the FLAMFILE
(in any way) leads to a decompression error.

Possible values:

YES create these information (default on
encryption) on compression

38 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

NO do not store any additional data

IGNORE ignore any security violations on
decompression

MEMBER only member-specific security
informations are verified on
decompression, not the entire
FLAMFILE

Default: NO (without encryption)
YES (with encryption

Valid for: compression, decompression

Note: Concatenation of ‘secure’ FLAMFILEs lead to
secure violations!

SECUREINFO=YES needs MODE=ADC or NDC.

SHOW Control of protocol

SH Possible values:

ALL All messages and statistics - generate
and display

NONE Don't display messages.

ATTRIBUT Display the parameters for
compression or decompression but
do not execute processing.

ERROR Display error messages and end-of-
program message only.

DIR The names of all files (and their
attributes) that are to be processed are
listed.

Default: ALL

Valid for: compression, decompression

Note: The SHOW parameter is in effect after it is
recognized.
The statistics inform about elapsed time and CPU time
needed. Also the number of bytes and records for both
input and output is computed. If relative files are
decompressed the number of records after the removal of
gaps is computed in addition. For conversion into fixed
record format the resulting number of bytes is displayed.

FLAM V4.5 (MVS) 39
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

This parameter corresponds to the INFO parameter (see
INFO).

SPACE1 Primary space allocation of the FLAMFILE in Megabytes

Possible values:

1 - 4095

Default: 2

Valid for: compression

SPACE2 Secondary space allocation of the FLAMFILE in
Megabytes

Possible values:

1 – 4095

Default: 40

Valid for: compression

SPLITMODE Mode to split a FLAMFILE

SPLITM Possible values:

NONE no split

SERIAL serial split

PARALLEL parallel split

Default: NONE

Valid for: compression

Note: Splitting of FLAMFILEs has been introduced in
FLAM V4.0 and is not compatible to older versions.

The split information is stored in the FLAMFILE. So it is
not necessary to use any parameter on decompression.

File- or DD-names must have numeric characters (ch.
3.1.5, or example in ch. 5.1.3).

40 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

SPLITNUMBER Number of fragments on parallel split

SPLITN Possible values:

2 - 4 number of simultaneously written files

Default: 4

Valid for: compression

Note: The information is stored in the FLAMFILE. So it is
not necessary to use any parameter on decompression.

All fragments have to be catalogued and ready to read. It
is not possible, to decompress one fragment alone.

Using this parameter needs SPLITMODE=PARALLEL.

SPLITSIZE Amount in MB of a fragment on serial split

SPLITS Possible values:

1 - 4095

Default: 100

Vaild for: compression

Note: The number of created files depends on the amount
of compressed data. The information is stored in the
FLAMFILE.

Using this parameter requires SPLITMODE=SERIAL.

STORCLAS Storage class for allocation of the FLAMFILE

STORC Possible values:

name name of the SMS storage class

Default: none

Valid for: compression

FLAM V4.5 (MVS) 41
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

UNIT Unit for allocation of the FLAMFILE

Possible values:

name name of the unit (e.g. SYSDA, 3390)

Default: none

Valid for: compression

VOLUME Volume for allocation of the output file

VOL Possible values:

name name of the volume (e.g. SYSWK1)

Default: none

Valid for: compression

TRANSLATE Code conversion.

TRA <CODE>

Possible values:

E/A Converts EBCDIC to ASCII.

A/E Converts ASCII to EBCDIC.

TRE2A00 Converts IMB273 to ISO 8859-1.

TRA2E00 Converts ISO 8859-1 to IBM273.

name Name of a data module (1-8
characters) that contains a 256 byte
table for code conversion.

Default: no code conversion

Valid for: compression, decompression

Note: With this function original data characters can be
translated before compression or after decompressing
before storage.

The specified table is loaded dynamically.

42 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Code conversion may be necessary for file transfer bet-
ween heterogeneous systems. It can be performed on any
system, but it is recommended to do it on the target
system, since FLAM already contains the necessary
conversion tables for that system.

Please look for the translation tables used by FLAM in
chapter A. The library FLAM.SRCLIB contains examples
of table modules.

Example:

CODETAB CSECT

TAB DC 256AL1(*-TAB)

ORG TAB+X'0C'

DC X'F1'

ORG TAB+C'A'

DC C'B'

ORG

END

If TRA=CODETAB was specified, the original data is
converted in the following way: from X'OC' to X'F1' and
each letter A to B.

Many translation tables will be found on our home page:

http://www.flam.de/en/download/addons/Flam4-
TranslationTables/zSeries/zos/

TRUNCATE Truncate output record.

TRU <OPTION=CUT/NOCUT>

Possible values:

YES If a decompressed record is longer
than specified for the output file, the
record is truncated.

NO No truncation. If records longer than
specified occur, decompression is
aborted.

Default: NO

Valid for: decompression

FLAM V4.5 (MVS) 43
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.1.2 JCL for FLAM

This description is valid for batch processing. Appropriate
commands must be used for dialogue processing (TSO).
FLAM is started via the EXEC command:

//stepname EXEC PGM=FLAM,PARM= ...

Parameter specification must be made according to the
JCL conventions (max. 100 characters, inclusion in quotes
in case of special characters, like '=', '(', etc.).

FLAM parameters specified via PARM= will overwrite
FLAM parameters stored in the FLAM parameter file.

If the FLAM modules are not stored within a system library
a FLAM load library must be specified:

//STEPLIB DD DSN=user.FLAM.LOAD,DISP=SHR

The input and output files can be assigned to FLAM via
DD cards. The DD names used are predefined default
names. Other DD names can be chosen via parameters.

The following file types are supported by FLAM:

- Physical sequential PS (also members of a PO library)

- PO libraries

- VSAM ESDS / KSDS / RRDS / LDS

The following record formats are supported:

V / VB / VS / VBS / F / FB / FS / FBS / U

Print files (A or M) are also supported.

The specification of a parameter file is possible but not
mandatory (usually the PARM= instruction is sufficient):

//FLAMPAR DD DSN=parameter_file,DISP=OLD

It is also possible to define the parameter file directly
imbedded in the JCL:

//FLAMPAR DD *
 parameter0,parameter1
 parameter2
/*

44 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

For compression an input file must be specified:

//FLAMIN DD DSN=uncompressed_input_file,
// DISP=SHR

This file must already exist and must be catalogued. It is
allowed to be "logically empty", which means that it does
not contain a data record.

For the creation of a compressed file (FLAMFILE) it is
sufficient to write:

//FLAMFILE DD DSN=compressed_file,
// DISP=(NEW,CATLG),
// UNIT=....,
// SPACE=....

With this card a sequential data set with a fixed record
length of 512 and a system determined block length will
be created. However, this may depend on the default
parameters specified or on additional parameters supplied
with the job.

//FLAMFILE DD DSN=compressed_file,
// DISP=(NEW,CATLG),
// UNIT=...,SPACE=...,
// DCB=(LRECL=1024,BLKSIZE=26624)

Using DCB attributes this assignment overwrites the
MAXSIZE or BLKSIZE parameters for the FLAMFILE. The
file is created according to the specifications in the DD
statement.

One example for using flexible configurations with the
FLAMFILE comes from the area JES / NJE:

//FLAMFILE DD SYSOUT=F,DEST=(node,userid),
// DCB=(LRECL=80,BLKSIZE=3120),...

If the FLAMFILE is already catalogued (DISP=OLD) FLAM
will use the configuration details from the catalogue entry
(even, if it is a VSAM file).

For decompression an output file must be assigned.

//FLAMOUT DD DSN=decompressed_file,
// DISP=(NEW,CATLG),
// UNIT=...,SPACE=...

With this specification a decompressed file will be created
that has identical characteristics regarding file format,
record and block length with the original file.

FLAM V4.5 (MVS) 45
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

If a PO library has been compressed and a new PO file is
to be defined for decompression by JCL, the selection rule
FLAMOUT=<*> (see chapter 3.1.4.3) must always be
specified. Otherwise member names are not known.

//EXEC PGM=FLAM,PARM='D,FLAMOUT=<*>'
//FLAMOUT DD DSN=po_file,DISP=OLD

If the original file came from a foreign system (VM, VSE,
UNIX, Windows, ...), FLAM will choose a format closest to
the original file.

If the FLAMFILE does not contain information about the
original file, e.g. caused by an 'HEADER=NO' parameter
during compression, the output file is created as variable
blocked (VB) and with a maximum record length of 32756
bytes and a block length of 32760 bytes.

Each DCB specification within a DD statement will
overwrite the values automatically chosen by FLAM or
specified as FLAM parameter.

If the output file is already catalogued the catalogue entry
will specify the file characteristics:

//FLAMOUT DD DSN=output_file,DISP=OLD

All messages are written by default into a message file:

//FLPRINT DD DSN=list_file,DISP= ...

or

//FLPRINT DD SYSOUT=*

If no file is specified despite the fact that the parameter
MSGDISP=MSGFILE is set, a message is written to the
console via WTO, ROUTCDE=11 and the program is
terminated with a condition code.

If messages shall be suppressed, SHOW=NONE must be
specified in the PARM= entry within the EXEC card.

Each file can be assigned as:

//ddname DD DUMMY

This will suppress file output or inhibit file input.

46 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Since this does not affect the general processing of FLAM,
it can be used conveniently for testing purposes:

 evaluation of compression ratio

 general testing of control flow

 using own read and write routines from user exits (we
recommend instead the USERIO interface, but in
principle the possibility mentioned above can be used,
too).

The DUMMY assignments are not suitable for
benchmarks. Because all physical disc or tape I/O is
suppressed, this leads to a much shorter elapsed time,
especially in case of later tape assignments or VSAM
I/Os.

Note: The record length in the DD statement must always
include the length of the record length field in case of
variable length records.

Opposite to that, FLAM requires the actual length of the
data (without length field) in it's own parameters and
displays also only the actual length of the data in the
protocol. To make this difference clear the parameter
name LRECL has been changed to MAXSIZE for the
FLAMFILE parameter printout. IRECSIZE and ORECSIZE
are equivalent notations for the input file and the output
file.

The FLAM user interface (see chapter 9) for TSO users
removes the task of writing JCL statements from the user
(including creation of VSAM files). All specifications can
be made interactively. Also batch job streams can be
generated with this facility.

FLAM V4.5 (MVS) 47
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.1.2.1 Dynamic file allocation

The specified files are allocated automatically by FLAM
(dynamic allocation, SVC 99) by means of parameter input
(FLAMIN=filename, FLAMFILE=filename, FLAMOUT=filename,
FLAMOUT=<*>, ...), as long as a DD statement has not
been specified.

If the files are already catalogued, FLAM will use the
configuration details from the catalogue entry. For reading
the file is assigned with 'DISP=SHR', for writing with
'DISP=OLD'. If the file is not already catalogued, it is
created ('DISP=(NEW,CATLG)').

For decompression (FLAMOUT=...) data such as file
organization, record length, block length, format and file
size are taken from the FLAM file header, which means
that the output file essentially corresponds to the original
file. Parameter inputs, however, take priority over the
stored data. When the parameter FLAMOUT=<*> is set,
the file names stored in the file header are used (see also
chapter 3.1.4).

The storage assignment contains the file size as primary
specification, 1/4 of the file size being the secondary
specification. In the case of PO libraries, the number of
directory entries is also known. The file is thus stored in
one extent on the disk.

If the file size is not known, because e.g. a FLAMFILE is
assigned or the compressed data has not been generated
under MVS (and therefore does not contain the file size),
default values are used (TRK,(30,900),RLSE).

If the default values are inadequate, a DD statement
specifying other values must be made or the file can be
created before the job is run (e.g. with function 3.2 in
ISPF).

All file types supported by FLAM (PS, PO, and VSAM) can
also be created dynamically again. However, since
important information required for creating new files is
missing (such as UNIT and VOLUME), SMS must be
used. The fact that this information is missing is on the
one hand due to data protection reasons (data exchange
via file transfer!); on the other hand, they would usually not
be useable due to transferral of the compressed data to
other computers. After all, compressed data from foreign
operating systems (VMS, VSE, UNIX, etc.) cannot even
contain these specifications.

Note: If parameters are specified and FLAM finds a DD
statement via the DD-NAME, all the specifications in this
statement take priority over the parameters specified or
values stored in the file header.

48 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.1.3 Condition Codes

For job control FLAM returns the following condition
codes:

 0 Normal termination (no error)

 4 Not all I/O files were processed during processing
of group files

 8 Less severe error occurred (e.g. parameter error)

 12 Usually a data management error

 16 Severe error during compression or decompressi
on

 80 Compression ratio was less than the specified limit
(see CLIMIT parameter)

 88 The file assigned was not a FLAMFILE

Only for condition code 0 and 80 compression was done
properly. In all other cases no or a faulty compressed file
was created. We recommend to rename this file in order
to avoid using it for processing at a later time.

If a condition code greater 0 was returned an error
message was already displayed by FLAM.

Condition code 16 could be caused by a FLAM system error.

The library FLAM.SRCLIB contains the call module FLAM.
This can be customized as required, allowing other
condition codes to be returned.

FLAM V4.5 (MVS) 49
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.1.4 File names

In principle, FLAM is able to process all file names via JCL
valid in MVS.

FLAM stores the name of the compressed file into the
FLAMFILE, if required. On decompression file names are
found that are not common to the z/OS system.

To avoid any conflicts with national character sets or
naming conventions in other systems, all file names stored
in ASCII character set are translated for message and
selection in the following way:
all national characters are translated to ‘X’, a backslash ‘\’
to slash ‘/’, and blanks ‘ ‘ to underline ‘_’.

So it is easier to enter foreign file names that are
unsupported in the z/OS environment. The file name itself
remains unchanged in the FLAMFILE.

Entering ‘*DUMMY’ as a file name causes FLAM to use
this file as dummy like the JCL command //ddname DD
DUMMY. I.e. reading an input file leads to EOF (end of
file), writing to an output file has no effect.
So DD-statements are not longer necessary for DUMMY
files.

3.1.4.1 File name list

By prefixing the '>' sign (greater than) to the file name or
DD-NAME, the FLAM parameters FLAMIN and IDDN are
able to specify a list of files for compression instead of one
single file.

It is also possible to specify a file list for decompression by
means of the FLAMFILE or FLAMDD parameter.

In this list, each file name must be contained in a separate
record; leading or trailing space characters (X'40') are
ignored. A comment can be inserted after the first space
character following the file name.

Empty records or records with an asterisk '*' in the first
column are regarded as comment lines.

All file names used in MVS are legal. Wildcard syntax is
allowed.

Example: If the records in the file USER.DAT.LIST
contain the following file names:

USER.DAT.PS

USER.VSAM.ESDS

50 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

USER.POLIB.*

USER.PO(MEMBER)

the specification

//... EXEC
PGM=FLAM,PARM='C,FLAMIN=>USER.DAT.LIST'

leads to all the files specified being compressed into one
FLAMFILE (group file).

The file that contains the list of file names can have any
format supported by FLAM and be of any type.

For 'in-stream files', i.e. input files temporarily created by
JES, it is advisable to assign the file names by means of
DD names:

//... EXEC PGM=FLAM,PARM='C,IDDN=>DDNAME'

//DDNAME DD *

USER.DAT.PS

USER.VSAM.ESDS

USER.POLIB.*

USER.PO(MEMBER)

/*

This allows the file name list to be specified directly in the
job.

3.1.4.2 Wildcard syntax

File names can be specified in FLAM by means of
parameters written with wildcard syntax. Correspondingly,
the entry

FLAMIN=USER.*.DATA.%BC

leads to the compression of all files with the 1st qualifier
USER, any 2nd qualifier, DATA as the third part of their
name, and a three-digit 4th qualifier which ends with BC
and begins with any character.

The asterisk '*' stands for any (even an empty) character
string.

The percent sign '%' stands for any character.

These special characters are also allowed within members
of one or more PO libraries:

USER.POLIB(FL*)
FLAM V4.5 (MVS) 51
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

specifies all members of the library USER.POLIB, that
begin with FL;

USER.*D.LIB(A%%B)

specifies all members whose 4-digit names begin with A
and end with B and whose libraries have the identification
USER, LIB as their final qualifier, and D as the last
character of the second to the last part of their name.

All input files are in this way stored in one compressed file
(group file).

Correspondingly, the wildcard entry in the selection rule
(see chapter 3.1.4.3) for decompression

FLAMOUT=<USER.DAT.*LIB>

leads to the decompression of only those items of
compressed data whose original names conform to the
syntax specified. (Comment: this procedure requires a
FLAM file header (HEADER=YES) and the file information
(FILE- INFO=YES) for compression).

Example:

...C,FLAMFILE=USER.DAT.CMP,FLAMIN=USER.*B.*LIB,

...

All files with names that conform to the FLAMIN
specification are to be compressed into the file
USER.DAT.CMP.

If the files

USER.DATA.ALIB

USER.DATAB.BLIB

USER.DATCB.CLIB

USER.DATCB.DLIB

are catalogued, the 1st file does not conform to the
wildcard syntax and is ignored during compression.

If

´D,FLAMFILE=USER.DAT.CMP,FLAMOUT=<USER.DATCB
.*LIB>´

is now specified for decompression, only the files
USER.DATCB.CLIB and USER.DATCB.DLIB will be
decompressed.

Correspondingly, it is also possible to select a number of
FLAMFILEs for decompression:

52 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

..D,FLAMFILE=USER.CMP.*.VR8,...

means all FLAMFILEs with the identification USER, CMP
as their 2nd qualifier, any character string as the 3rd part
of their name and VR8 as their last qualifier are to be
decompressed.

FLAM V4.5 (MVS) 53
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.1.4.3 Selection rule for decompression

During decompression, the files can be created and
catalogued by FLAM automatically. This requires the
existence of a valid file name in the file header of the
FLAMFILE (i.e. the parameters HEADER and FILEINFO
must not be set to NO for compression).

In addition, a FLAMFILE can contain several files (i.e. it is
a group file) and it is possible to decompress specific files
from such a group FLAMFILE on a targeted basis by
specifying a selection rule.

In order to distinguish it from a 'genuine' file name, a
selection rule is written between pointed brackets '<>'.

FLAMOUT=<USER.FILE.ORG>

With the above rule set, the file USER.FILE.ORG is
decompressed from the FLAMFILE. (Comment: if the
pointed brackets were left out, the entire FLAMFILE would
be decompressed and written into the file
USER.FILE.ORG !) This name must be contained in a file
header of the FLAMFILE.

If the FLAMFILE contains other compressed files, they are
ignored due to the unique selection rule set.

If several files are to be decompressed from a group file, a
wildcard syntax can be specified. The simplest entry
possible is a lone asterisk:

FLAMOUT=<*>

This decompresses all of the files from the FLAMFILE and
locates them on the disk under their original names.

A selection rule is implicitly regarded by FLAM as having
an asterisk at the beginning and at its end, i.e.:

<DAT*ABC > corresponds to <*DAT*ABC*>

When analyzing the file names, FLAM synchronizes itself
to the character string specified.

Example: The FLAMFILE contains the data
USER.DAT1.PS and USER.DAT2.PO. The specification

...D,FLAMOUT=<DAT1>,...

decompresses only the file USER.DAT1.PS.

Since there is no asterisk specified in the name,
decompression is termimated after the first hit.

54 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Note: If, in addition to the selection rule, a file is assigned
by means of JCL, the JCL specification takes priority. I.e.,
the above specification together with the DD statement

/FLAMOUT DD DSN=USER2.POLIB(MEMBER),DISP=...

leads to decompression of the USER.DAT1.PS file from
the FLAMFILE and it is written into the PO library
USER2.POLIB as the member MEMBER.

This, then, allows the changing of file names during
decompression by means of JCL specifications.

3.1.4.4 Conversion rule

This simple method of selecting files for decompression by
means of a selection rule can, however, not normally be
used for compressed data that has been generated under
a different operating system (heterogeneous exchange of
compressed data). The file names do not normally
conform to the rules of the MVS operating system and can
therefore not be used without being modified.

For this purpose, it is possible to specify a conversion rule
as the parameter for the output file. This character string
describes how a new name is to be generated from a file
name selected. At the same time, precisely those files that
conform to the rule (selection rule) are selected.

A conversion rule is a selection rule that is extended by an
equals sign '=' and a second character string. In order to
distinguish it from a 'genuine' file name, it must be written
between pointed brackets '<>'. The rule comprises a
character string that may contain an asterisk '*' as a
substitute character for any number of characters or a
percent sign '%' as a substitute for precisely one
character. An ignore character (apostrophe ') is also
defined.

Each asterisk '*' or percent sign '%' in the selection rule
must be assigned an asterisk or percent sign or an
apostrophe in the conversion rule.

The asterisk means that the character string in the input
file is to be transferred unchanged to the output file.
Correspondingly, the '%' transfers precisely that character
located in this position.

The apostrophe sees to it that the character string or
character represented in the input file by an asterisk or
percent sign respectively, is not transferred to the output
file. The remaining characters from the input file are
translated into the corresponding characters from the
conversion rule. The length of the character string can be
changed as desired.

FLAM V4.5 (MVS) 55
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

<USER.*=USER2.*>

With this rule, all file names beginning with USER are
converted to the new identification USER2. The rest of the
name is retained.

<USER.DAT%B.*=USER.DEC.DAT%C.*>

With this rule, all files with the identification USER are
given the prefix DEC before their old name. In the
process, only those files are affected whose second part
of their name begins with DAT, is followed by any
character and ends with B. This B is converted to C in the
name of the output file.

Above all, empty character strings are also allowed in the
conversion rule, so that characters can be deleted. E.g.:

<USER*UP*=USER.CMP**>

Old name: USER.FLAMUP00
New name: USER.CMPFLAM00

The UP part of the name is not mentioned in the output
name and is therefore left out.

A conversion rule is implicitly supplemented by FLAM,
e.g.:

<ASM.=CMP.> corresponds to <*ASM.*='CMP.*>

This can be particularly useful when converting the file
names from other systems.

Example:

The FLAMFILE created under DEC/VMS contains the
following file names:

DUA1:[ABC]DE0051.;7

DUA1:[ABC]DE0052.;4

DUA1:[ABC]DE0080.;2

DUA1:[ABC]DE0152.;4

This corresponds to specification of the file versions of the
user ABC on disk volume DUA1, with the version number
stated after the semicolon.

56 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

In order to be able to create these files in MVS, the
following conversion rule could be specified:

FLAMOUT=<DE*.;*=USER.DE*'>

This implicitly deletes the name prefix DUA1:[ABC], takes
over the part of the name beginning with DE and
supplements it with the identification, and deletes the rest
of name:

USER.DE0051

USER.DE0052

USER.DE0080

USER.DE0152

The conversion rule is also important with respect to
generating members of a PO library:

FLAMOUT=<USER.*.LIST=USER.POLIB(*)>

This rule means that the 2nd name qualifiers of the
original file are used as member names of the PO library.

So far, the conversion rule has only been described for
decompression from a (group) FLAMFILE.

It can, however, also be used for compression with
simultaneous generation of several items of compressed
data in different files. In this respect, the conversion rule
relates to the FLAMFILEs whose names are generated
from the file names of the input files (FLAMIN).

This is how all compressed data could be given a prefix:

C,FLAMIN=USER.*.LIST,FLAMFILE=
<USER.*.LIST=USER.CMP.*.LIST>

It is, however, also possible to store each item of
compressed data as a member of a library by means of
the following specification:

C,FLAMIN=USER.*.LIST,FLAMFILE=
<USER.*.LIST=USER.POLIB(*)>

The member name is, in this case, the 2nd qualifier of the
input file.

Also valid here: if a library is specified for the FLAMFILE
by the JCL, the name of the library as specified in the rule
is ignored and only the members in the specified PO file
are generated.

FLAM V4.5 (MVS) 57
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

The reverse also applies: file names of the FLAMFILEs
are used to generate file names for the decompressed
files:

D,FLAMFILE=USER.CMP.*,FLAMOUT=
<USER.CMP.*=USER.*.LIST>

Note: If a group file has been created with HEADER=YES
but FILEINFO=NO, no file name has been stored for this
file.

The individual files can then be accessed for
decompression via the internal file name: the name is in
the range from FILE0001 (for the first file) to FILE9999 (for
the 9999th file).

...D,FLAMOUT=<FILE0003=USER.DAT.THREE>,..

is for the third file in the group file; or

...D,FLAMOUT=<FILE*=USER.DAT*>,..

is for decompressing all files according to the conversion
rule.

Comment: As a "final rescue option" for automatic
generation of the decompressed data with "impossible" file
names from foreign operating systems, the parameter
FILEINFO=NO can be specified for the decompression
process. With this parameter, the stored file names are
ignored and the internal names FILE0001 to FILE9999 are
generated. These must then be converted to valid file
names by means of a conversion rule.

58 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.2 Subprogram interface FLAMUP

In the following we describe the interface using
ASSEMBLER language. Therefore the following table
shows, how the different data types must be defined in
COBOL and FORTRAN.

With FLAMUP it is possible to compress a file completely
or to decompress a compressed file. Similar to the FLAM
utility the parameters must be passed to FLAMUP.
FLAMUP uses the same parameters as the FLAM utility.
All parameters defaults can be defined during generation.

The arrows define the direction of data flow:

 the field must be filled by the calling
program

 the field is filled by the called program

 the field is filled by the calling
program as well as by the called
program

Parameters:

1  FILEID F Identification

2  RETCO F Return code

= 0 No error

some usual codes, for all return codes see chapter 8

= 1 Records truncated
= 9 CLIMIT exceeded
= 10 File is not a FLAMFILE
= 11 FLAMFILE format error

FLAM V4.5 (MVS) 59
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Assembler Cobol Fortran Meaning
F PIC S9 (8)

COMP SYNC
INTEGER*4 Aligned

Fullword

H PIC S9 (4)
COMP SYNC

INTEGER*2 Aligned
Halfword

CLn PIC X (n)
USAGE
DISPLAY

CHARACTER*
n

n printable
characters

Interfaces Chapter 3

= 12 Record length error
= 13 File length error
= 14 Checksum error
= 15 Original record is greater than 32764 bytes
= 16 Original record is greater than matrix - 4
= 20 Invalid OPENMODE
= 21 Invalid size of matrix buffer
= 22 Invalid compression mode
= 23 Invalid code in FLAMFILE
= 24 Invalid MAXRECORDS parameter
= 25 Invalid record length MAXSIZE
= 29 Password error
= 30 FLAMFILE is empty
= 31 FLAMFILE is not assigned
= 32 Invalid OPENMODE
= 33 Invalid file type
= 34 Invalid record format
= 35 Invalid record length
= 36 Invalid block length
= 37 Invalid key position (not 1)
= 38 Invalid key length
= 39 Invalid file name
= x'Exxxxxxx' FLAMFIO error for original file input
= x'Axxxxxxx' FLAMFIO error for original file output
= x'Fxxxxxxx' FLAMFIO error for compressed file
= x'Cxxxxxxx' FLAMFIO error for parameter file
= x'Dxxxxxxx' FLAMFIO error for message file
= x'xFxxxxxx' Error in data management (VSAM)
= 40 Module or table cannot be loaded
= 41 Module cannot be called
= 42 Module cannot be unloaded
= 43-49 Abort by user exit
= 52 Too many or invalid keys
= 80 Syntax error during parameter input
= 81 Unknown parameter (key word)
= 82 Unknown parameter value
= 83 Parameter value not decimal
= 84 Parameter value too long
= 96 No file name found or error when determining file names
= 98 Not all files were processed
= 999 Error during memory request

3  PARAM Cln Parameter area

4  PARLEN F Length of parameter area

60 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

= 0 No parameter
> 0 Length (n) of parameter area

Note: Parameters must be written in the same way as in
the utility.

Only upper case letters are allowed!

FLAM V4.5 (MVS) 61
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Example for the call of FLAMUP in COBOL:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
*
* EXAMPLE FOR THE CALL OF FLAMUP
*
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 FLAMID PIC S9(8) COMP SYNC.
 77 RETCO PIC S9(8) COMP SYNC.
 77 PARAM PIC X(80).
 VALUE ’C,MODE=ADC’
 77 PARLEN PIC S9(8) COMP SYNC VALUE 10.
*
 PROCEDURE DIVISION.
*
 CALL ‘FLAMUP’ USING FLAMID, RETCO, PARAM,
PARLEN.

*
 STOP RUN.

62 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Example for the call of FLAMUP in ASSEMBLER:

EXAMPLE CSECT
 .
 .
 .
*
* CALL FLAMUP
*
 LA 1,FLAMUPAR
 L 15,=V(FLAMUP)
 BALR 14,15
 .
 .
 .
*
* PARAMETER FOR FLAMUP
*
FLAMUPAR DC A(FLAMID)

DC A(RETCO)
DC A(PARAM)
DC A(X’80000000’+PARLEN)

*
FLAMID DS F
RETCO DS F
PARAM DC C'C,MODE=ADC'
PARLEN DC F'10'
*
*
* SAVEAREA
*
SAVEAREA DS 18F

END

Register usage for ASSEMBLER:

 R1: address of parameter list
 R13: points to save area (18 words)
 R14: contains return address

FLAM V4.5 (MVS) 63
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

 R15: contains call address
Example for the call of FLAMUP in C ++:

// an example for calling flamup from C++
//
// set linkage convention
extern "OS" void FLAMUP(void **,long *,char
*,long *);
int main()
{
 void *flamid;
 long retco;
 long parlen=10;
 char param[10]="C,MODE=ADC";
 FLAMUP(&flamid,&retco,param,&parlen);
 return 0;
}

64 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3 Record level interface FLAMREC

FLAMREC consists of a number of subroutines that can
be called by any programming language such as COBOL,
FORTRAN, etc., as well as by ASSEMBLER programs.
Except for the key descriptions all parameters are
implemented as elementary data types (INTEGER,
STRING). Deliberately no control blocks are required to
avoid alignment problems and additional copying of
parameter values before and after a function call. Key
descriptions are organized as a structured data type in
order to shorten the parameter list.

All parameter lists start with an identificator. This identifies
the compressed file between FLMOPN and FLMCLS. The
identification is followed by a return code that informs the
caller about successful execution or occurring errors.

Processing of a compressed file always starts with
function FLMOPN that assigns the program to the
compressed file and defines the operation mode. A file
opened successfully must always be closed with function
FLMCLS.

There are no messages generated at the record level
interface.

During transfer of original data the parameter RECORD
always contains the true data without any length fields or
record delimiters. Or the parameter RECPTR points to a
field with such a content. The parameter RECLEN always
contains the length of the true data (exclusive length).

COBOL programs can be translated using the 'DYNAM'
option. As a result, the FLAM modules are loaded from the
library only at the moment of execution.

If a dynamic call is not wanted ('NO-DYNAM' option in
COBOL or V constants in ASSEMBLER), the FLAM
module FLAMREC should be specified explicitly when
linking.

FLAM V4.5 (MVS) 65
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Example for the call of FLMOPF in COBOL:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
*
* EXAMPLE FOR THE CALL OF FLMOPF
*
ENVIRONMENT DIVISION
DATA DIVISION.
WORKING-STORAGE SECTION.
77 FLAMID PIC S9(8) COMP SYNC.
77 RETCO PIC S9(8) COMP SYNC.
77 VERSION PIC S9(8) COMP SYNC.
77 FLAMCODE PIC S9(8) COMP SYNC.
77 COMPMODE PIC S9(8) COMP SYNC.
77 MAXBUFF PIC S9(8) COMP SYNC.
77 HEADER PICS9(8) COMP SYNC.
77 MAXREC PIC S9(8) COMP SYNC.
77 BLKMODE PIC S9(8) COMP SYNC.
77 EXK20 PIC X(8) VALUE SPACES.
77 EXD20 PIC X(8) VALUE SPACES.
01 KEYDESC.
 05 KEYFLAGS PIC S9(8) COMP SYNC.
 05 KEYPARTS PIC S9(8) COMP SYNC.
 05 KEYELEM OCCURS 8 TIMES.
 10 KEYPOS PIC S9(8) COMP SYNC.
 10 KEYLEN PIC S9(8) COMP SYNC.
 10 KEYTYPE PIC S9(8) COMP SYNC.
*
PROCEDURE DIVISION.
*
 CALL "FLMOPF" USING FLAMID, RETCO, VERSION
 FLAMCODE, COMPMODE, MAXBUFF, HEADER,
 MAXREC,KEYDESC, BLKMODE, EXK20, EXD20.
 .
 .
 .

66 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Example for the call of FLMOPF in ASSEMBLER:

EXAMPLE CSECT
.
.
.

*
* DEFINE VALUES
*

LA 0,3
ST 0,COMPMODE COMPMODE = ADC
LA 0,1
ST 0,HEADER HEADER = YES
ST 0,BLKMODE BLKMODE = YES
LA 0,4095
ST 0,MAXREC MAXRECORDS = 4095
L 0,=F'65536'
ST 0,MAXBUFF MAXBUFFER = 65536
LA 0,0
ST 0,KEYPARTS KEYPARTS = 0
ST 0,KEYPOS1 KEYPOS1 = 0
ST 0,KEYFLAGS = NO DUPLICATE KEY
ST 0,KEYTYPE1 = PRINTABLE
ST 0,KEYLEN1 KEYLEN1 = 0
MVI EXK20,C' ' NO EXK20
MVI EXD20,C' ' NO EXD20

*
* CONSTRUCT PARAMETER LIST FOR FLMOPF
*

LA 15,VERSION
ST 15,ARVERSIO
LA 15,CODE
ST 15,ARCODE
LA 15,COMPMODE
ST 15,ARCOMPMO
LA 15,MAXBUFF
ST 15,ARMAXBUF
LA 15,HEADER

FLAM V4.5 (MVS) 67
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

ST 15,ARHEADER
LA 15,MAXREC
ST 15,ARMAXREC
LA 15,KEYDESC
ST 15,ARKYDESF
LA 15,BLKMODE
ST 15,ARBLKMOD
LA 15,EXK20
ST 15,AREXK20
LA 15,EXD20
ST 15,AREXD20
OI AREXD20,X’80’ last parameter

*
* CALL FLMOPF
*

LA 1,RECPAR
L 15,=V(FLMOPF)
BALR 14,15
.
.
.

*
* PARAMETER LIST FOR FLMOPN
*
RECPAR DS 0A
ARFLAMID DS A ADDRESS FLAMID
ARETCO DS A ADDRESS RETCO
AREST DS 0F
ARLAST DS A ADDRESS LASTPAR
ARMODE DS A ADDRESS MODE
ARLINK DS A ADDRESS DD-NAME
ARSTATIS DS A ADDRESS STATIS
*
* PARAMETERS FOR FLMOPD
*
 ORG ARMODE
ARNLEN DS A ADDRESS NAMELEN
ARNAME DS A ADDRESS FILENAME

68 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

ARDSORG DS A ADDRESS DSO&G
ARECFORM DS A ADDRESS REFORM
ARMAXSIZ DS A ADDRESS MAXSIZE
ARECDELI DS A ADDRESS RECDELIM
ARKYDESD DS A ADDRESS KEYDESC
ARBLKSIZ DS A ADDRESS BLKSIZE
ARCLOSDI DS A ADDRESS CLOSDISP
ARDEVICE DS A ADDRESS DEVICE
*
* PARAMETERS FOR FLMOPF
*
 ORG AREST
ARVERSIO DS A ADDRESS VERSION
ARCODE DS A ADDRESS CODE
ARCOMPMO DS A ADDRESS COMPMODE
ARMAXBUF DS A ADDRESS MAXBUFFER
ARHEADER DS A ADDRESS HEADER
ARMAXREC DS A ADDRESS MAXREC
ARKYDESF DS A ADDRESS KEYDESC
ARBLKMOD DS A ADDRESS BLKMODE
AREXK20 DS A ADDRESS EXK20
AREXD20 DS A ADDRESS EXD20
*
* PARAMETERS FOR FLMCLS
*
 ORG AREST
ARCPUTIM DS A ADDRESS CPUTIME
ARECORDS DS A ADDRESS RECORDS
ARBYTES DS A ADDRESS BYTES
ARBYTOFL DS A ADDRESS BYTEOFL
ARCMPREC DS A ADDRESS CMPRECS
ARCMPBYT DS A ADDRESS CMPBYTES
ARCBYOFL DS A ADDRESS CBYTEOFL
*
* PARAMETERS FOR FLMGET, FLMLOC AND FLMPUT
*
 ORG AREST
ARECLEN DS A ADDRESS RECLEN

FLAM V4.5 (MVS) 69
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

ARECPTR DS A ADDRESS RECORD (RECPTR WITH
LOCATE)
ARBUFLEN DS A ADDRESS BUFLEN
*
* PARAMETERS FOR FLMPOS
*
 ORG AREST
ARPOS DS A ADDRESS POSITION
*
* PARAMETERS FOR FLMGHD AND FLMPHD
*
 ORG AREST
ARHNAML DS A ADDRESS NAMLENE
ARHNAME DS A ADDRESS FILENAME
ARHFCBT DS A ADDRESS FILE FORMAT
ARHRECF DS A ADDRESS RECORD FORMAT
ARHRECS DS A ADDRESS RECORD LENGTH
ARHRECD DS A ADDRESS RECDELIM
ARHKEYD DS A ADDRESS KEYDESC
ARHBLKS DS A ADDRESS BLOCK LENGTH
ARHPRCTR DS A ADDRESS PRINTER CONTROL
CHARACTER

ARHSATTL DS A ADDRESS ATTRIBUTE LENGTH
ARHSATTR DS A ADDRESS SYSTEMSPEC.
ATTRIBUTES

ARHSYST DS A ADDRESS OPERATING SYSTEM
 ORG
*
* PARAMETERS VALUES FOR FLAMREC
*
RETCO DS F RETURN CODE
FLAMID DS F FLAMFILE-ID
LASTPAR DS F END OF PARAMETERS INPUT
OPENMODE DS F OPENMODE
POSITION DS F RELATIVE POSITION
ABSPOS DS F ABSOLUTE POSITION
*
NAMELEN DS F LENGTH OF FILE NAME FLAMFILE
FILENAME DS CL54 FILE NAME OF FLAMFILE

70 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

DSORG DS F DSORG
RECFORM DS F RECFORM
MAXSIZE DS F MAXSIZE
RECDELIM DS XL4 RECDELIM
KEYSIZE DS F LENGTH OF ALL PARTIAL KEYS
BLKSIZE DS F BLKSIZE
CLOSDISP DS F CLOSDISP
DEVICE DS F DEVICE
*
VERSION DS F FLAM VERSION
CODE DS F FLAMCODE
COMPMODE DS F COMPMODE
MAXBUFF DS F MAXBUFFER
HEADER DS F HEADER
MAXREC DS F MAXRECORDS
BLKMODE DS F BLKMODE
EXK20 DS CL8 EXK20
EXD20 DS CL8 EXD20
*
CPUTIME DS F CPU TIME IN MILLI SECONDS
ELATIME DS F ELAPSED TIME IN MILLI
SECONDS

RECORDS DS F NUMBER OF ORIGINAL RECORDS
BYTES DS F NUMBER OF ORIGINAL BYTES
BYTEOFL DS F OVERFLOW COUNTER FOR
* ORIGINAL BYTES
CMPRECS DS F NUMBER OF COMPRESSED RECORDS
CMPBYTES DS F NUMBER OF COMPRESSED BYTES
CBYTEOFL DS F OVERFLOW COUNTER FOR
* COMPRESSED BYTES
FSATTRL DS F LENGTH OF SYSTEM
* SPECIFIC ATTRIBUTES
FSYSATTR DS 0X SYSTEM SPECIFIC ATTRIBUTES
*
* KEY DESCRIPTION
*
KEYDESC DS 0F
KEYFLAGS DS F
KEYPARTS DS F NUMBER OF KEY PARTS

FLAM V4.5 (MVS) 71
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

KEYPOS1 DS F FIRST BYTE OF FIRST PART
KEYLEN1 DS F LENGTH OF FIRST PART
KEYTYPE1 DS F DATA TYPE OF FIRST PART
KEYPOS2 DS F
KEYLEN2 DS F
KEYTYPE2 DS F
KEYPOS3 DS F
KEYLEN3 DS F
KEYTYPE3 DS F
KEYPOS4 DS F
KEYLEN4 DS F
KEYTYPE4 DS F
KEYPOS5 DS F
KEYLEN5 DS F
KEYTYPE5 DS F
KEYPOS6 DS F
KEYLEN6 DS F
KEYTYPE6 DS F
KEYPOS7 DS F
KEYLEN7 DS F
KEYTYPE7 DS F
KEYPOS8 DS F FIRST BYTE OF LAST PART
KEYLEN8 DS F LENGTH OF LAST PART
KEYTYPE8 DS F DATA TYPE OF LAST PART
*
RECLEN DS F
RECPTR DS A
*
* SAVEAREA
*
SAVEAREA DS 18F

 .
 .
 .

 END

72 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.1 Function FLMOPN

The function FLMOPN must be called first. The
compressed file is assigned to the program and the
processing mode is defined.

Parameters:

1  FLAMID F Identification. Must be specified in all following calls
without any modifications.

2  RETCO F Return code (see ch. 8)
= 0 No error
= -1 Error during memory request
= 10 File is not a FLAMFILE
= 11 FLAMFILE format error
= 12 Record length error
= 13 File length error
= 14 Checksum error
= 20 Invalid OPENMODE
= 21 Invalid size of matrix buffer
= 22 Invalid compression mode
= 23 Invalid code in FLAMFILE
= 24 Invalid BLOCKMODE
= 25 Invalid record length
= 30 FLAMFILE is empty
= 37 Invalid key position (unequal 1)
= 40 Module or table cannot be loaded
= 41 Module cannot be called
= 42 Module cannot be unloaded
= 43-49 Abort by user exit
= 52 Invalid duplicate keys in the FLAMFILE
= 57 Invalid partially compressed data length
= x'F00000XX' FLAM error code from FLAMFIO for FLAMFILE

 x' 1F' = 31 FLAMFILE no assigned
 x' 20' = 32 Invalid OPENMODE
 x' 21' = 33 Invalid file type
 x' 22` = 34 Invalid record format
 x' 23' = 35 Invalid record length
 x' 24' = 36 Invalid block length
 x' 26' = 38 Invalid key length
 x' 27' = 39 Invalid file name
 x' 28' = 40 I/O-module not loaded (e.g. missing STEPLIB in JCL)

= x'FFXXXXXX' DMS error code from FLAMFIO for FLAMFILE

3  LASTPAR F End of parameters for OPEN

FLAM V4.5 (MVS) 73
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

= 0 No further parameters
= otherwise Additional function call with FLMOPD or FLMOPF

will follow

4  OPENMODE F The OPEN mode controls the operation mode
= 0 INPUT = read FLAMFILE (DECOMPRESSION)
= 1 OUTPUT = write FLAMFILE (COMPRESSION)
= 2 INOUT (with key and sequential read and update)

Note: not allowed in MODE=ADC/NDC

5  DDNAME CL8 Symbolic file name padded with blanks

6  STATIS F Switch statistics on or not
= 0 No statistics
= 1 Collect statistic data and transfer to user with FLMCLS

3.3.2 Function FLMOPD

The function FLMOPD describes special file attributes of
the FLAMFILE. If FLMOPD is used, this function must be
called as the second FLAM function after FLMOPN.
Otherwise the default values described in the following are
used. Generated parameters are not provided.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification, invalid call (e.g. LASTPAR=0 for

FLMOPN)
= otherwise Further return codes, see chapter 8

3  LASTPAR F End of parameters for OPEN

= 0 No further parameters
= otherwise Additional function call with FLMOPF follows

4  NAMELEN F  Length of file name area

 Length of file name
see note *)

5  FILENAME CLn File name of FLAMFILE. The used file name is returned.

74 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

6  DSORG F File format of FLAMFILE
= 0; 8; 16 PS; ESDS
= 1; 9; 17 IS; KSDS
= 2; 10 ; RRDS
= 3; 11 ; LDS

7  RECFORM F Record format of FLAMFILE
= 0; 8; 16 V; VB; VBS
= 1; 9; 17 F; FB; FBS
= 2; 10; 18 U

8  MAXSIZE F Maximum record length of FLAMFILE. Valid values:
80 - 32760. For CX7 a maximum record length of 4096
applies for the FLAMFILE (512 = DEFAULT)

9  RECDELIM XLn Record delimiter (Currently not supported.)

10  KEYDESC STRUCT Key description for original records (the address of
the structure must be passed)

  Key description
KEYFLAGS F Option
= 0 No duplicate key (DEFAULT)
= 1 Duplicate keys allowed
KEYPARTS F Number of key parts
= 0 - 8 (0 = no keys)
KEYPOS1 F Byte position of first key part
= 1-32759
KEYLEN1 F Length of first key part
= 1 - 255

KEYTYPE1 F Data type of first key part
= 0 Printable characters
= 1 Binary values

.

.

.
KEYPOS8 F Byte position of eighth key part
= 0 - 32759
KEYLEN8 F Length of eighth key part
= 1 - 255
KEYTYPE8 F Data type of eighth key part
= 0 Printable characters
= 1 Binary values

FLAM V4.5 (MVS) 75
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

11  BLKSIZE F Block size
= 0 unblocked
= 80 - 32760

12  CLOSDISP F Mode of CLOSE processing
= 0 REWIND
= 1 UNLOAD
= 2 LEAVE

13  DEVICE F Device type

= 0; 8; 16 Disc or unknown
= 1; 9; 17 Tape
= 2; 10; 18 Floppy disc
= 3; 11; 19 Streamer
= 7; 15; 23 User

FLAM computes an optimum key length from the key
description of the original file. In the case of binary
compressed data, this key length is 1 byte longer than the
sum of the original keys, with printable compressed data
syntax (MODE=CX7), 2 bytes are added. The key position
is always 1. If the KSDS-FLAMFILE is created by means
of IDCAMS, the specifications mentioned above should be
taken into account. A too short key length leads to a loss
of performance during further processing.

*note: Sometimes the actual used file has a different
name than given (found by jcl DD-statement) and is longer
than expected. If the buffer FILENAME (in length of
NAMELEN) is too short to fit the full file name, it will be
truncated.
It is recommended to define FILENAME in length of 54
bytes, to fill up the file name with blanks, and to set
NAMELEN to 54. On return the actual length is stored,
FILENAME is padded with blanks.

3.3.3 Function FLMOPF

The function FLMOPF defines the attributes of the
compressed file. FLMOPF can be called as second
function after FLMOPN or as third function after FLMOPD.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code

76 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

= 0 No error
= -1 Invalid identification, invalid call (e.g. LASTPAR=0 for

FLMOPN or FLMOPD)
= 40 Load of user exit failed
= 43-49 Abort by user exit
= otherwise Further return codes, see chapter 8

3  VERSION F FLAMFILE version
= 100 Version 1 / 6020
= 101 Version 1 / 6035
= 200 Version 2
= 300 Version 3
= 400 Version 4

4  FLAMCODE F Character code of FLAMFILE
= 0 EBCDIC
= 1 ASCII

5  COMPMODE F Compression mode
= 0 CX8
= 1 CX7
= 2 VR8
= 3 ADC
= 5 NDC

6  MAXBUFF F Size of matrix buffer in BYTES. Any positive value is
allowed. The actual used value is returned.

7  HEADER F FILEHEADER to be created or available.
= 0 No file header to be created or available.
= 1 File header to be created or available.

8  MAXREC F Maximum record number in matrix
= 1- 255 in mode CX7/CX8/VR8
= 1- 4095 in mode ADC

9  KEYDESC STRUCT Key description for original records (the address of the
data structure must be passed).

KEYFLAGS F Option
= 0 No duplicate keys
= 1 Duplicate keys allowed
KEYPARTS F Number of key parts
= 0 - 8 (0 = no key)
KEYPOS1 F Byte position of first part of key
= 1 - 32759

FLAM V4.5 (MVS) 77
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

KEYLEN1 F Length of first part of key
= 1 - 255
KEYTYPE1 F Data type of first part of key
= 0 Printable characters
= 1 Binary values
.
.
.
KEYPOS8 F Byte position last part of key
= 1 - 32759
KEYLEN8 F Length of last part of key
= 1 - 255
KEYTYPE8 F Data type of last part of key
= 0 Printable characters
= 1 Binary values (DEFAULT)

10  BLKMODE F Blocked or unblocked output for sequential compressed files.
= 0 Unblocked (one compressed record contains only data

from one matrix)
= 1 Blocked (one compressed record can contain

data from many matrices)

11  EXK20 CL8 Blank or name of user exit for output of compressed file

12  EXD20 CL8 Blank or name of user exit of input of compressed file
  If the exit *STREAM is activated automatically during

decompression.

78 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.4 Function FLMCLS

With function FLMCLS the access to the record level
interface is terminated.

When compression is closed, the last matrix is
compressed now, the compressed data is written to the
FLAMFILE. Additional information (byte-, record counter,
MACs) are stored as an ‘ending record’, if required
(SECUREINFO=YES). Then the FLAMFILE is closed.

When decompression is closed, only the FLAMFILE is
closed. Additional records not yet read from the
FLAMFILE are discarded.

If specified with FLMOPN (STATIS=1), statistical data is
transferred to the caller.

Parameters:

1  FLAMID F Identification
2  RETCO F Return code

= 0 No error
= -1 Invalid identification (e.g. FLMCLS already done ?)
= 43-49 Abort by user exit
= x'FFXXXXXX' DMS- error code

The following parameters are only used if the statistics are
switched on in FLMOPN.

3  CPUTIME F CPU in milliseconds
4  RECORDS F Number of original records
5  BYTES F Number of original bytes
6  BYTEOFL F Overflow counter for original bytes
7  CMPRECS F Number of compressed records
8  CMPBYTES F Number of compressed bytes
9  CMPBYOFL F Overflow counter for compressed bytes

With extremely big compressed files (greater 4 gigabytes)
one word byte counters are not sufficient. For this purpose
the overflow counters are provided. They allow to extend
the counter to a double word:

01 BYTEFIELD.
 05 BYTEOFL PIC 9(8) COMP SYNC.
 05 BYTES PIC 9(8) COMP SYNC.
01 BYTECNT REDEFINES BYTEFIELD PIC S9(18) COMP
SYNC.

FLAM V4.5 (MVS) 79
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.5 Function FLMDEL

With function FLMDEL it is possible to delete the last read
original record from an index sequential FLAMFILE.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function invalid
= 5 No active record found
= 43-49 Abort by user exit
= x'FFXXXXXX' DMS error code see FLMOPN

80 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.6 Function FLMEME

The function FLMEME finishes the current data as
member of a Group-FLAMFILE (end member). During
compression, the content of the matrix is compressed and
written immediately, enlarged with some security
information, if required (SECUREINFO=YES); during
decompression, the next matrix is decompressed.

On AES encryption, a member MAC is created and
written. The MAC is returned.

On AES decryption, the member MAC is returned.

Statistical values are returned.

To end only a matrix and not the entire member, function
FLMFLU is provided.

Parameter:

1  FLAMID F Identification
2  RETCO F Return code

= 0 No error
= -1 Invalid identification
= 43-49 Abort by user exit
= x'FFXXXXXX' DMS error code

3  CPUTIME F CPU in milliseconds
4  RECORDS F Number of original records
5  BYTES F Number of original bytes
6  BYTEOFL F Overflow counter for original bytes
7  CMPRECS F Number of compressed records
8  CMPBYTES F Number of compressed bytes
9  CMPBYOFL F Overflow counter for compressed bytes

10  MEMBRMAC XL8 Member-Mac

With extremely big compressed files (greater 4 gigabytes)
one word byte counters are not sufficient. For this purpose
the overflow counters are provided. They allow to extend
the counter to a double word:

01 BYTEFIELD.
 05 BYTEOFL PIC 9(8) COMP SYNC.
 05 BYTES PIC 9(8) COMP SYNC.
01 BYTECNT REDEFINES BYTEFIELD PIC S9(18) COMP
SYNC.

FLAM V4.5 (MVS) 81
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

82 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.7 Function FLMFKY

The function FLMFKY (Find Key) can be used to search in
an index sequential FLAMFILE for a record of the original
file, whose key is equal to or greater than a specified key
value. The specified value can be generic, i.e. not all of
the positions of the key value have to be specified
uniquely. The record found is the next record to be
processed.

If FLMFKY does not find a record, the old position is
retained.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 Key not found
= otherwise See function FLMGET

3  KEYLEN F Key length
This contains the number of significant bytes in the
specified key value. It can be less than the key length. In
this case, only the length passed here is taken into
account in the logical relation specified in the argument
checkmod.

4  RECORD Record buffer with search key

5  CHECKMOD Type of relation
= 0 equal to
= 1 greater than or equal to
= 2 greater than

FLAM V4.5 (MVS) 83
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.8 Function FLMFLU

The function FLMFLU finishes the current FLAM matrix. If
specified with FLMOPN (STATIS=1), statistical data is
transferred to the caller. During compression, the content
of the matrix is compressed and written immediately;
during decompression, the next matrix is decompressed.

Parameters:

1  FLAMID F Identification
2  RETCO F Return code

= 0 No error
= -1 Invalid identification
= 43-49 Abort by user exit
= x'FFXXXXXX' DMS error code

The following parameters are only used if the statistics are
switched on.

3  CPUTIME F CPU in milliseconds in foreign processes
4  RECORDS F Number of original records
5  BYTES F Number of original bytes
6  BYTEOFL F Overflow counter for original bytes
7  CMPRECS F Number of compressed records
8  CMPBYTES F Number of compressed bytes
9  CMPBYOFL F Overflow counter for compressed bytes

With extremely big compressed files (greater 4 gigabytes)
one word byte counters are not sufficient. For this purpose
the overflow counters are provided. They allow to extend
the counter to a double word:

01 BYTEFIELD.
 05 BYTEOFL PIC 9(8) COMP SYNC.
 05 BYTES PIC 9(8) COMP SYNC.
01 BYTECNT REDEFINES BYTEFIELD PIC S9(18) COMP
SYNC.

84 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.9 Function FLMFRN

The function FLMFRN (Find Record Number) positions
the record pointer to a record with a specified number in
an index sequential FLAMFILE. This number corresponds
to the record number of the sequential or relative original
file. The record is the next record to be processed.
Specifying checkmod=1 or 2 allows gaps and empty
records to be skipped.

If FLMFRN does not find a record, the old position is
retained.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 Invalid position
= otherwise See function FLMGET

3  RECNO F Record number
= 1 File start. With checkmod=1,2 the true record number is

returned

4  CHECKMOD Type of relation
= 0 Record with specified number
= 1 Record with specified number, skip gaps and empty

records
= 2 Record with next number, skip gaps and empty records

FLAM V4.5 (MVS) 85
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.10 Function FLMGET

With function FLMGET the next original record is read in
sequential order. It is possible to position to a certain
record in the compressed file using FLMGKY or FLMPOS
and then to continue with sequential reading. Data is
transferred from the record buffer to the calling program
(MOVE mode).

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 1 Record was truncated because original record was larger

than BUFLEN
= 2 END-OF-FILE found
= 3 Gap in relative file found
= 6 New file starts, eventually the new file header can be read
= 7 Password required. Pass it via FLMPWD
= 11 FLAMFILE format error
= 12 Record length error
= 13 File length error
= 14 Checksum error
= 29 Illegal password
= 43-49 Abort by user exit
= 52 Too many or invalid duplicate keys
= x'FFXXXXXX' Data management error code
= otherwise See chapter 8.4

3  RECLEN F Record length in bytes of the passed record

4  RECORD XLn Original record (data)

5  BUFLEN F Length of available record buffer in bytes

Note:

With return codes 2 , 6 and 7 no record is passed.

With return code 3 a record of length 0 is passed.

86 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.11 Function FLMGHD

The function FLMGHD (Get File Header) is only allowed
during decompression. The file header describes the file
format of the original records. It is possible to request the
file header information with function FLMGHD at any time
between FLAM-OPEN (FLMOPN, FLMOPD, FLMOPF)
and FLAM-CLOSE (FLMCLS). If there are several file
headers in the FLAMFILE (see FLMPHD), the last file
header recognized by FLAM is transferred with FLMGHD.
The first file header is usually available immediately after
FLAM-OPEN (see FLMOPF HEADER=1). When FLAM
recognizes additional file headers it will inform the user via
the return code (RETCO=6) of FLMGET or FLMLOC.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function

3  NAMLEN F Length of file name or of area
= 0 File name not known

4  FILENAME CLn File name of original file

5  FCBTYPE F File format
= 0 sequential
= 1 index sequential
= 2 relative
= 3 random access
= 5 library
= 6 physically

6  RECFORM F Record format
= 0; 8; 16 ... VARIABEL (V) 8 = VARBLK 16 = SPNBLK
= 1; 9; 17 ... FIX (F) 9 = FIXBLK
= 2; 10; 18 ... UNDEFINED (U)
= 3; 11; 19 ... STREAM (S) 11 = text delimiter 19 = length fields

7  RECSIZE F Record length
= 0 - 32760
RECFORM = V: Maximum record length or 0
RECFORM = F: Record length
RECFORM = U: Maximum record length or 0
RECFORM = S: Length of text delimiter or of length field

FLAM V4.5 (MVS) 87
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

8  RECDELIM XLn Record delimiter

9  KEYDESC STRUCT Key description
KEYFLAGS F Options
= 0 No duplicate keys
= 1 Duplicate keys allowed
KEYPARTS F Number of key parts
= 0 - 8 0 = No keys available
KEYPOS1 F First byte of first key part
= 1 - 32759 Value < = Record length
KEYLEN1 F Length of first key part
= 1 - 255
KEYTYP1 F Data type of first key part
= 0 Printable characters
= 1 Binary values
.
.
KEYPOS8 F First byte of eighth key part
= 1 - 32759 Value < = record length
KEYLEN8 F Length of eighth key part
= 1 - 255
KEYTYP8 F Data type of eighth key part
= 0 Printable characters
= 1 Binary values

10  BLKSIZE F Block length
= 0 unblocked
= 1- 32760

11  PRCTRL F Printer control characters
= 0 none
= 1 ASA control characters
= 2 Machine specific control characters

12  SYSTEM XL2 Operating system where FLAMFILE was created.
= x'0000' unknown
= x'0080' MS-DOS
= x'0101' IBM MVS, z/OS
= x'0102' IBM VSE/SP, zVSE
= x'0103' IBM VM/SP VM/XA
= x'0104' IBM DPPX/8100
= x'0105' IBM DPPX/370
= x'02XX' UNISYS
= x'0301' DEC VMS

88 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

= x'0302' DEC ULTRIX
= x'0401' SIEMENS BS2000
= x'0402' SIEMENS SINIX
= x'0403' SIEMENS SYSTEM V
= x'0501' NIXDORF 886X
= x'0502' NIXDORF TARGON
= x'06XX' WANG
= x'07XX' PHILLIPS
= x'08XX' OLIVETTI
= x'11XX' INTEL 80286
= x'12XX' INTEL 80386
= x'13XX' INTEL 80486

FLAM V4.5 (MVS) 89
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.12 Function FLMGKY

The user can obtain an original record from an index
sequential FLAMFILE via a key by using the function
FLMGKY.

The search key must be placed at the key position within
the record area.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 1 Record was truncated because original record exceeds

BUFLEN
= 5 Key not found
= otherwise See function FLMGET or chapter 8.4

3  RECLEN F Length of passed record in bytes

4  RECORD XLn Original record (Data with key)

5  BUFLEN F Length of available record buffer in bytes

90 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.13 Function FLMGRN

The function FLMGRN (Get Record Number) reads the
original record of a sequential or relative file from an index
sequential FLAMFILE as specified by the record number.

If FLMGRN does not find a valid record, the new position
moved to is the next record or the end of the file.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 1 Record was truncated because original record was larger

than BUFLEN
= 2 END-OF-FILE found
= 3 Gap in relative file found
= 5 Invalid record number (0 or negative)
= 6 New file starts, eventually the new file header can be read
= otherwise See function FLMGET or chapter 8.4

3  RECLEN F Record length in bytes of the passed record

4  RECORD XLn Original record (data)

5  BUFLEN F Length of available record buffer in bytes

6  RECNO F Record number
= 1 File start

With return codes 2, 6 and 7 no record is passed.

With return code 3 a record of length =0 is passed.

FLAM V4.5 (MVS) 91
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.14 Function FLMGTR

With function FLMGTR (Get reverse) the previous original
record is read in sequential order. It is possible to position
to a certain record in the compressed file using FLMGKY
or FLMPOS and then to read backward sequentially. Data
is transferred from the record buffer to the calling program
(MOVE mode).

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 1 Record was truncated because original record was larger

than BUFLEN
= 2 END-OF-FILE found
= 3 Gap in relative file found
= 6 New file starts, eventually the new file header can be read
= otherwise See function FLMGET or chapter 8.4

3  RECLEN F Record length in bytes of the passed record

4  RECORD XLn Original record (data)

5  BUFLEN F Length of available record buffer in bytes

With return codes 2 and 6 no record is passed.

With return code 3 a record of length 0 is passed.

92 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.15 Function FLMGUH

The function FLMGUH (Get User Header) reads the user
data from the file header of the FLAMFILE.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function

3  UATTRLEN F Length of user data in bytes or length of area
= 0 No data
= 1-3500 With 8-bit compressed data (CX8, VR8)
= 1-1750 With 7-bit compressed data (CX7)

4  UATTR XLn User data

The user data is reproduced exactly as it is written, i.e.
converting the code of a file transfer has no effect here.

FLAM V4.5 (MVS) 93
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.16 Function FLMIKY

The function FLMIKY allows to insert records with a key to
an index sequential FLAMFILE (VSAM-KSDS).

Parameter:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 Key exists already
= 15 Original record is larger than 32763 bytes
= 16 Original record is larger than matrix - 4
= 43-49 Abort by user exit
= 52 Too many or invalid duplicate keys
= x'FFXXXXXX' DMS error code

3  RECLEN F Record length (data length) in bytes without record length field

4  RECORD XLn Original record (data with key)

94 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.17 Function FLMLCR

The function FLMLCR is equivalent to FLMGTR (Get
reverse). The data will not be transmitted but only a
pointer on the record is provided (locate Mode).

Parameter:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 2 Beginning of file found
= otherwise see FLMGET or chapter 8.4

3  RECLEN F Record length in bytes of the passed record

4  RECPTR A Record address (data address)

Note:

With return codes 2 and 6 no record address is passed.

With return code 3 the length 0 is passed.

FLAM V4.5 (MVS) 95
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.18 Function FLMLOC

The function FLMLOC is equivalent to FLMGET. But data
is not transferred. Instead a pointer to the record is set
(LOCATE mode).

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
 = 0 No error

= -1 Invalid identification or function
= 2 END-OF-FILE found
= 3 gap in relative file found
= 6 New file begins, eventually a new file header can be read.
= otherwise See function FLMGET or chapter 8.4

3  RECLEN F record length in bytes of record passed

4  RECPTR A record address (data address)

Note:

With return codes 2 and 6 no record address is passed.

With return code 3 the length 0 is passed.

96 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.19 Function FLMPHD

The function FLMPHD (Put File Header) is only allowed
during compression. The file header describes the file
format for the original records following. If multiple files are
compressed into one FLAMFILE, each original file may
have its own file header created with FLMPHD. FLAM
returns the header information during decompression if
required (FLMGHD). The function FLMPHD is only
allowed if HEADER=1 was specified with FLMOPF.

Using SECUREINFO=YES, function FLMPHD is
mandatory!

The FLAM utility uses these data during decompression to
build the output file (FLAMOUT).

Note: The parameter in FLMPHD control also the
construction of an index sequential FLAMFILE. On
DSORG=0 (sequential data), a record number is created
and used as a record key; on DSORG=1 (index
sequential) the original key is used.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function

3  NAMLEN F Length of file name
= 0 Don't use file name

4  FILENAME CLn File name of original file

5  DSORG F File format
= 0; 8; 16 ... sequential
= 1; 9; 17 ... index sequential
= 2; 10; 18 ... relative
= 3; 11; 19 ... random access
= 5; 13; 21 ... library
= 6; 14; 22 ... physical

6  RECFORM F Record format
= 0; 8; 16 ... VARIABEL (V) 8 = VARBLK 16 = SPNBLK
= 1; 9; 17 ... = FIX (F) 9 = FIXBLK 17=FBS
= 2; 10; 18 ... = UNDEFINED (U)
= 3; 11; 19 ... = STREAM (S) 11 = text delimiter 19 = length fields

FLAM V4.5 (MVS) 97
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

7  RECSIZE F Record length
= 0 - 32760
RECFORM = V: Maximum record length or 0
RECFORM = F: Record length
RECFORM = U: Maximum record length or 0
RECFORM = S: Length of text delimiter or of text length field

8  RECDELIM XLn Record delimiter

9  KEYDESC STRUCT Key description
KEYFLAGS F Options
= 0 No duplicate keys
= 1 Duplicate keys allowed
KEYPARTS F Number of key parts
= 0 - 8 0 = No key available
KEYPOS1 F First byte of first key part
= 1 - 32759 Value < = record length
KEYLEN1 F Length of first key part
 = 1 - 255
KEYTYP1 F Data type of first key part
= 0 Printable characters
= 1 Binary values
.
.
KEYPOS8 F First byte of last key part
= 1 - 32759 Value < = record length
KEYLEN8 F Length of last key part
= 1 - 255
KEYTYP8 F Data type of last key part
= 0 Printable characters
= 1 Binary values

10  BLKSIZE F Block length

= 0 unblocked
= 1 - 32760

11  PRCTRL F Printer control characters
= 0 none
= 1 ASA control characters
= 2 Machine specific control characters

12  SYSTEM XL2 Operating system
= x'0000' unknown
= x'0101' IBM MVS/z/OS

98 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

= x'0102' IBM VSE
= x'0103' IBM VM

13  LASTPAR F End of parameters for file header
= 0 No more parameters.

 otherwise A user header is to be transferred with FLMPUH.

FLAM V4.5 (MVS) 99
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.20 Function FLMPKY

The function FLMPKY allows to insert records into an
index sequential FLAMFILE or to update records within
such a file via a key.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 Key not allowed
= 15 Original record greater than 32763 bytes
= 16 Original record greater than matrix - 4
= 43 Abort by user exit
= 52 Too many or invalid duplicate keys
= x'FFXXXXXX' DMS error code

3  RECLEN F Record length (data length) in bytes without record length
field (exclusive length)

4  RECORD XLn Original record (Data with key)

100 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.21 Function FLMPOS

FLMPOS allows to position the record pointer within
compressed files.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 Invalid position
= 40 - 78 see function FLMGET
= x'FFXXXXXX' DMS error code

3  POSITION F Position

= - MAXINT File start (-2147483648 or X'80000000' or -99999999)

= + MAXINT File end (+2147483647 or X'7FFFFFFF' or + 99999999)

= - N N records backwards

= + N N records forwards

= - 9999 9998 Back to the start of the current file or to the start of the
previous file in a group file

= + 9999 9998 Beginning of the next file in a group file.

With OPEN=INPUT and INOUT or OUTIN the pointer can
positioned anywhere, irrespective of whether the original
file is index sequential or sequential.

With OPEN = OUTPUT it is possible to create gaps in
relative files by advancing the write pointer by N records.

FLAM V4.5 (MVS) 101
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.22 Function FLMPUH

The function FLMPUH (Put User Header) writes user data
into the file header of the FLAMFILE.

Parameter:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function

3  UATTRLEN F Length of file name or of area
= 1-3500 With 8-bit compressed data
= 1-1750 With 7-bit compressed data (Mode=CX7)

4  USERATTR XLn User data as binary data string.

In CX7, this data is converted in such a way that the
integrity of the FLAMFILE is not corrupted.

The user data itself remains in its original code during
reading, even during code conversions using
heterogeneous data exchange.

102 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.23 Function FLMPUT

With function FLMPUT one original record is transferred
for compression.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification of function
= 15 Original record is larger than 32763 bytes
= 16 Original record is larger than matrix - 4
= 43-49 Abort by user exit
= x'FFXXXXXX' DMS error code (see FLMOPN)

3  RECLEN F Record length (Data length) in bytes without record length
field (exclusive length)

4  RECORD XLn Original record (Data)

FLAM V4.5 (MVS) 103
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.24 Function FLMPWD

With function FLMPWD a password is given in. This
function can only called up once.

It is the first call after the last FLMOPx function during
encryption.

The encryption mode is set by the function FLMSET, on
decryption the information is read from in the FLAMFILE
and can be obtained from function FLMQRY.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Password function invalid, e.g. for MODE=CX8, VR8,

CX7, renewed call up

3  PWDLEN F Password length in bytes (max. 64)

4  PASSWORD XLn Password

104 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.25 Function FLMQRY

With function FLMQRY parameters can be obtained
during decompression.

It may be called at any time after FLMOPN, but the results
depend on the moment it is called. E.g. SPLIT.. are first
known after FLMOPD, CRYPTOMODE after FLMOPF.

Note: In opposite to other function calls the field RETCO
was expanded into two words (2 x 4 byte). The first word
is still the return code, the second word is the info code.
The info code is the parameter in error on return.

Parameters:

1  FLAMID F Identification

2  RETCO,INFCO 2F Return code, Info code
= 0,0 no error, Info code=0

else: the parameter in error is returned in INFCO.

= 91,param unknown parameter

3  PARAM1 F first parameter

4  VALUE1 F first parameter value

.

.

.

n  PARAMn F last parameter

n+1 VALUEn F last parameter value

Note: Multiple parameter can be set in one call. It is
necessary to mark the end of the parameter list! Most
compilers do it automatically, but in Assembler the last
parameter address has to be flagged: A(X’80000000’
+VALUEn).

Following parameters are available:

FLAM V4.5 (MVS) 105
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Description Parameter Value _____________

Splitmode 1 0 / 1 / 2
none / serial / parallel

Splitnumber 2 2 - 4

Cryptomode 2001 0 / 1 / 2
none / FLAM / AES

Secureinfo 2002 0 / 1 / 2 / 3
no / yes / ignore / member

106 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.3.26 Function FLMSET

Function FLMSET sets parameter that open functions do
not support.

It is called before FLMOPD and/or FLMOPF. A call at the
wrong moment will be rejected with return code 90.

Note: In opposite to the other function calls the field
RETCO was expanded into two words (2 x 4 byte). The
first word is still the return code, the second word is the
info code. The info code is the parameter in error on
return.

Parameters:

1  FLAMID F Identification

2  RETCO,INFCO 2F Return code, Info code
= 0,0 no error, Infocode=0

else: the parameter in error is returned in INFCO.

= 90,param not allowed (e.g. SPLITMO after FLMOPD)
= 91,param unknown parameter
= 92,param unknown parameter value

3  PARAM1 F first parameter

4  VALUE1 F first parameter value

.

.

.

n  PARAMn F last parameter

n+1 VALUEn F last parameter value

Note: Multiple parameter can be obtained in one call. It is
necessary to mark the end of the parameter list! Most
compilers do it automatically, but in Assembler the last

FLAM V4.5 (MVS) 107
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

parameter address has to be flagged: A(X’80000000’
+VALUEn).

Following parameters are to be set before FLMOPD:

Description Parameter Value _____________

Splitmode 1 0 / 1 / 2
none / serial / parallel

Splitnumber 2 2 – 4

Splitsize 3 1 - 4095
Value in megabytes

Parameter to allocate a FLAMFILE:

Primary Space 4 1 - 4095
value in megabytes

Secondary Space 5 1 - 4095
value in megabytes

Volume 6 name
(1-8 character)

Unit 7 name
(1-8 character)

Data Class 8 name
(1-8 characte)

Storage Class 9 name
(1-8 character)

Management Class 10 name
(1-8 character)

Disposition Status 11 0 / 1 / 2 / 3 / 4
(Default,NEW,OLD,SHR,MOD)

Disposition Normal 12 0 / 1 / 2 / 3 / 4
(Default,DELETE,KEEP,CATLG,UNCATLG)

Dispos. Abnormal 13 0 / 1 / 2 / 3 / 4
(Default,DELETE,KEEP,CATLG,UNCATLG)

108 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Following parameters are to be set before FLMOPF:

Description Parameter Value _____________

Cryptomode 2001 0 / 1 / 2
none / FLAM / AES

Secureinfo 2002 0 / 1 / 2 / 3
no / yes / ignore / member

FLAM V4.5 (MVS) 109
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.3.27 Function FLMUPD

The function FLMUPD updates the original record last
read from a VSAM-KSDS FLAMFILE.

Parameters:

1  FLAMID F Identification

2  RETCO F Return code
= 0 No error
= -1 Invalid identification or function
= 5 No current record
= 15 Original record is greater than 32764 bytes
= 16 Original record is greater than matrix - 4
= 43 Abort by user exit
= x'FFXXXXXX' DMS error code

3  RECLEN F Record length (data length) in bytes without record length
field

4  RECORD XLn Original record (data)

110 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.4 User I/O interface

The user I/O interface can be used for the FLAM utility, for
the subprogram FLAMUP and for the record level
interface FLAMREC.

Under FLAM and FLAMUP it is possible to process the
input file (FLAMIN), the output file (FLAMOUT) and the
compressed file (FLAMFILE) with the user I/O interface.
The user I/O interface is activated by specifying the
parameters IDEVICE=USER, ODEVICE=USER and
DEVICE=USER.

At the record level interface FLAMREC the user I/O
interface is activated with the parameter DEVICE in
function FLMOPD only for the compressed file
(FLAMFILE).

The required functions are then provided by the user. The
functions USROPN and USRCLS are mandatory. From
the other functions only that functions must be provided,
that are actually needed by the application.

The product FLAM contains an example source program
for the user I/O interface written in COBOL and
ASSEMBLER. In this example all functions are provided
as dummies.

USROPN Open of file or of interface.

USRCLS Close of file or of interface.

USRGET Read one record and pass.

USRPUT Accept one record and write.

USRGKY Read one record with key and pass.

USRPOS Position in file.

USRPKY Accept one record and write with key.

USRDEL Delete the last read record.

FLAM V4.5 (MVS) 111
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.4.1 Function USROPN

Open the interface for the file defined in the DD-name.

Parameters:

1  WORKAREA 256F The working area is initialized with x00. This area is
assigned exclusively to the file opened. It can be used as

a
memory or scratchpad between different function calls.

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 30 Input file is empty
= 31 Input file does not exist
= 32 Invalid OPENMODE
= 33 Invalid file type
= 34 Invalid record format
= 35 Invalid record length
= 36 Invalid block length
= 37 Invalid key position
= 38 Invalid key length
= 39 Invalid file name
= x'0FXXXXXX' Other error codes

3  OPENMODE F The OPEN mode controls the operation mode.
= 0 INPUT (read sequential) (File must exist)
= 1 OUTPUT (write sequential) (New file is created or old file

is
overwritten)

= 2 INOUT (with key, also read and write sequentially) (File
must exist)

= 3 OUTIN (with key, also read and write sequentially) (New
file is created or old file is overwritten)

4  DDNAME CL8 Symbolic file name

5  DDSORG F File format
= 0; 8; 16 ... sequential
= 1; 9; 17 ... index sequential
= 2; 10; 18 ... relative
= 3; 11; 19 ... random access
= 5; 13; 21 ... library
= 6; 14; 22 ... physical

112 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

6  RECFORM F Record format
= 0; 8; 16 ... VARIABEL (V) 8 = VARBLK 16 = SPNBLK
= 1; 9; 17 ... FIX (F) 9 = FIXBLK 17=FBS
= 2; 10; 18 ... UNDEFINED (U)
= 3; 11; 19 ... STREAM (S) 11 = text delimiter 19 = record length field

FLAM V4.5 (MVS) 113
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

7  RECSIZE F Record length
= 0 - 32760
RECFORM = V: Maximum record length or 0
RECFORM = F: Record length
RECFORM = U: Maximum record length or 0
RECFORM = S: Length of text delimiter or of record length field

8  BLKSIZE F Block length
= 0 unblocked
= 1 - 32760

9  KEYDESC STRUCT Key description
KEYFLAGS F Options
= 0 No duplicate keys
= 1 Duplicate keys allowed
KEYPARTS F Number of key parts
= 0 - 8 0 = No key available
KEYPOS1 F First byte of first key part
= 1 - 32759 Value record length
KEYLEN1 F Length of first key part
= 1 - 255
KEYTYP1 F Data type of first key part
= 0 Printable characters
= 1 Binary values
.
.
.
KEYPOS8 F First byte of last key part
= 1 - 32759 Value record length
KEYLEN8 F Length of last key part
= 1 - 255
KEYTYP8 F Data type of last key part
= 0 Printable characters
= 1 Binary value

10  DEVICE F Device type
= 7; 15; 23 ... User devices

11  RECDELIM XLn Record delimiter

12  PADCHAR XL1 Padding character

13  PRCTRL F Printer control characters
= 0 none
= 1 ASA control characters

114 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

= 2 Machine specific control characters

14  CLOSDISP F Method of CLOSE processing
= 0 REWIND
= 1 UNLOAD
= 2 LEAVE

FLAM V4.5 (MVS) 115
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

15  ACCESS F Access method
= 0 logical (by record)

16  NAMELEN F Length of file name or of file name area

17  FILENAME CLn File name

Note: In the current version only one key is supported.

3.4.2 Function USRCLS

The interface is closed for a given file.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= x'0FXXXXXX' Other error codes

3.4.3 Function USRGET

Head record sequentially and pass.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Function invalid
= 1 Record was truncated
= 2 END-OF-FILE found
= 3 Gap in relative file found
= x'0FXXXXXX' Other error codes

3  RECLEN F Length of passed record in bytes

4  RECORD XLn Original record (Data)

116 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

5  BUFLEN F Length of available record buffer in bytes

FLAM V4.5 (MVS) 117
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.4.4 Function USRPUT

Accept record and write sequentially.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 1 Record was truncated
= 4 Record was filled with padding characters (PADCHAR)
= x'0FXXXXXX' Other error codes

3  RECLEN F Length of passed record in bytes

4  RECORD XLn Original record (Data)

3.4.5 Function USRGKY

Head record with specified key and pass. The key value is
filled into the record at the key position defined in
KEYDESC.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 1 Record was truncated
= 2 END-OF-FILE found
= 5 Key not found
= x'0FXXXXXX' Other error codes

3  RECLEN F Record length in bytes

4  RECORD XLn Record with key / Record

5  BUFLEN F Length of available record buffer in bytes

118 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

FLAM V4.5 (MVS) 119
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.4.6 Function USRPOS

Position record pointer in file.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 5 Invalid position
= x'0FXXXXXX' Other error codes

3  POSITION F Relative position
= 0 No positioning
= - MAXINT File start (-2147483648 or x'80000000')
= + MAXINT File end (+2147483647 or x'7FFFFFFF')
= - n n records backwards
= + n n records forwards

Note: This function allows to create gaps within a relative
file by positioning the record pointer forward.

3.4.7 Function USRPKY

Write record with specified key.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 1 Record was truncated
= 4 Record was filled with padding characters (PADCHAR).
= 5 Key is invalid
= x'0FXXXXXX' Other error code

3  RECLEN F Length of passed record in bytes

4  RECORD XLn Original record (Data)

120 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Note: Usually the record is inserted. Only if the key of the
last record read is identical with the key passed in the
USRPKY function, the record is updated (REWRITE).
Otherwise, for identical keys, a new record with the same
key is inserted if duplicate keys are allowed.

FLAM V4.5 (MVS) 121
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.4.8 Function USRDEL

Delete the last read record.

Parameters:

1  WORKAREA 256F Working storage area

2  RETCO F Return code
= 0 No error
= -1 Invalid function
= 5 No active record found
= x'0FXXXXXX' Other error codes

122 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.5 User exits

Addressing mode when calling user exits:

User exits can be written for any addressing mode
(AMODE=ANY, AMODE=31, AMODE=24, no mode
specified).

The addressing mode only has to be taken into account if
FLAM is loaded with AMODE=31 and the user exit is for
some reason only able to run with AMODE=24. Only in
this case the addressing mode must be switched over in
the user exit itself. It must be noted that the save area, the
return address, the parameter list and the parameters can
be addressed only in AMODE=31. The addressing mode
used by FLAM is stored in the most significant bit of R14
and can be looked up there.

In all other cases, the addressing mode is already set
correctly and it is switched over again by FLAM after the
return if this is necessary. It is irrelevant whether the
return is executed with a BR14 or a BSM 0,14.

3.5.1 Input original data EXK10

In this user exit the original records (which shall be
compressed) are passed to a user module immediately
after they are read from the input file. This user exit can be
used with the FLAM utility or with the subprogram
FLAMUP. In this user exit records can be accepted,
modified, inserted and deleted.

The exit is activated via the parameter EXK10=<name>.
The user exit module must be contained in the library that
has been assigned with the STEPLIB command.

Name: free choice (max. 8 characters)

Register usage:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return address
® R15: Contains call address

FLAM V4.5 (MVS) 123
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

Parameter list:

1  FUCO F Function code
= 0 First call for file (after OPEN)
= 4 Record read and passed
= 8 Last call for file (before CLOSE)

2  RETCO F Return code
= 0 Accept record / no error
= 4 Do not accept record
= 8 Insert record
= 12 Enforce end of compression
= 16 Error in user exit; abnormal termination

3  RECPTR A Record pointer

4  RECLEN F Record length (maximum 32760)

5  EXWORK 256F During the first call the working storage area contains the
symbolic file name of the original file within the first 8
characters. The rest of the area is padded with x00. This
area can be used by the user exit module for any purpose.
With each call this working storage area is made available
again with the old content.

Note: If a record shall be extended or inserted, the neces-
sary working storage area must be provided by the user
exit module.

Return code 12 is only necessary if the compression shall
be finished before the end of the input file is reached.

For function code 0 and 8 no record is passed to the
module. For function code 8 it is allowed to insert a record
with return code 8.

For return code 8 the record provided by the user exit
module is processed. Then the user exit module is called
again for the old record from the input file.

Table of valid function codes and return codes:

124 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

function code: 0 4 8
return code: 0 x x x

4 x
8 x x
12 x
16 x x x

Chapter 3 Interfaces

FLAM V4.5 (MVS) 125
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.5.2 Output compressed data EXK20

In this user exit the compressed records are passed to a
user module immediately before they are written to the
compressed file. This user exit can be used with the FLAM
utility or with the subprogram FLAMUP. In this user exit
records can be accepted, modified, inserted and deleted.

The exit is activated via the parameter EXK20=<name>.
The user exit module must be contained in the library that
has been assigned with the STEPLIB command.

Name: free choice (max. 8 characters)

Register usage:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return address
® R15: Contains call address

Parameter list:

1  FUCO F Functions code
= 0 First call for file (after OPEN)
= 4 Record passed
= 8 Last call for file (before CLOSE)

2  RETCO F Return code
= 0 Accept record / no error
= 4 Do not accept record
= 8 Insert record
= 12 Enforce end of compression
= 16 Error in exit; abnormal termination

3  RECPTR A Record pointer

4  RECLEN F Record length (maximum 32760)

5  EXWORK 256F During the first call the working storage area contains the
symbolic file name of the original file within the first 8
characters. The rest of the area is padded with x'00'. This
area can be used by the user exit module for any purpose.
With each call this working storage area is made available
again with the old content.

Note: If a record shall be extended or inserted, the
necessary working storage area must be provided by the
user exit module.

126 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Return code 12 is only necessary if the compression shall
be finished before the end of the input file is reached.

For function code 0 and 8 no record is passed to the
module. For function code 8 it is allowed to insert a record
with return code 8.

For return code 8 the record provided by the user exit
module is written. Then the user exit module is called
again for the old compressed record.

Table of valid function codes and return codes:

FLAM V4.5 (MVS) 127
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

function code: 0 4 8
return code: 0 x x x

4 x
8 x x
12 x
16 x x x

Interfaces Chapter 3

3.5.3 Output original data EXD10

In this user exit the decompressed records are passed to
a user module immediately before they are written to the
output file. This user exit can be used with the FLAM utility
or with the subprogram FLAMUP. In this user exit records
can be accepted, modified, inserted and deleted.

The exit is activated via the parameter EXD10=<name>.
The user exit module must be contained in the library that
has been assigned with the STEPLIB command.

Name: free choice (max. 8 characters)

Register usage:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return address
® R15: Contains call address

Parameter list:

1  FUCO F Functions code
= 0 First call for file (after OPEN)
= 4 Record passed
= 8 Last call for file (before CLOSE)

2  RETCO F Return code
= 0 Accept record / no error
= 4 Do not accept record
= 8 Insert record
= 12 Enforce end of decompression
= 16 Error in exit; abnormal termination

3  RECPTR A Record pointer

4  RECLEN F Record length (maximum 32760)

5  EXWORK 256F During the first call the working storage area contains the
symbolic file name of the original file within the first 8
characters. The rest of the area is padded with x'00'. This
area can be used by the user exit module for any purpose.
With each call this working storage area is made available
again with the old content.

Note: If a record shall be extended or inserted, the
necessary working storage area must be provided by the
user exit module.

128 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Return code 12 is only necessary if decompression shall
be finished before the end of the compressed file is
reached.

For function code 0 and 8 no record is passed to the
module. For function code 8 it is allowed to insert a record
with return code 8.

For return code 8 the record provided by the user exit
module is written. Then the user exit module is called
again for the old record.

A change of the record length is accepted if the output file
is defined with RECFORM=V.

Table of valid function codes and return codes:

FLAM V4.5 (MVS) 129
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

function code: 0 4 8
return code: 0 x x x

4 x
8 x x
12 x
16 x x x

Interfaces Chapter 3

3.5.4 Input compressed data EXD20

In this user exit the compressed records are passed to a
user module immediately after they are read from the
compressed file. This user exit can be used with the FLAM
utility or with the subprogram FLAMUP and in the record
level interface FLAMREC. In this user exit records can be
accepted, modified and deleted.

The exit is activated via the parameter EXD20=<name>.
The user exit module must be contained in the library that
has been assigned with the STEPLIB command.

Name: free choice (max. 8 characters)

Register usage:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return address
® R15: Contains call address

Parameter list:

1  FUCO F Functions code
= 0 First call for file (after OPEN)
= 4 Record passed
= 8 Last call for file (before CLOSE)

2  RETCO F Return code
= 0 Accept record / no error
= 4 Do not accept record
= 8 Insert record
= 12 Enforce end of decompression
= 16 Error in exit; abnormal termination

3  RECPTR A Record pointer

4  RECLEN F Record length (maximum 32760)

5  EXWORK 256F During the first call the working storage area contains the
symbolic file name of the original file within the first 8
characters. The rest of the area is padded with x'00'. This
area can be used by the user exit module for any purpose.
With each call this working storage area is made available
again with the old content.

Note: If a record shall be extended or inserted, the
necessary working storage area must be provided by the
user exit module.

130 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Return code 12 is only necessary if decompression shall
be finished before the end of the compressed file is
reached.

Because of the necessary synchronisation with the
construction of the matrix this return code is not always
possible.

For function code 0 and 8 no record is passed to the
module.

Table of valid function codes and return codes:

FLAM V4.5 (MVS) 131
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Funktionscode: 0 4 8
Returncode: 0 x x x

4 x
8 x x
12 (x)
16 x x x

Interfaces Chapter 3

3.5.5 Key management KMEXIT

This user exit is an interface to a special (e.g. user written)
key management system.

On encryption, parameters (KMPARM=…) are passed to
the module. It returns a key for encryption of the
FLAMFILE and a string up to 512 byte. These data are
stored in the FLAMFILE as an user header (see
parameter COMMENT or function FLMPUH).

On decryption, parameters (KMPARM=…) and the data
stored in the user header are passed to the exit. The
module returns the same key as on encryption.

It is up to the module, how to create a key and what kind
of information are to be stored into the user header of the
FLAMFILE. These data will help the module to find the
correct key on decryption.

The exit is activated via the parameter KMEXIT=<name>.

The user exit module must be contained in the library that
has been assigned with the STEPLIB command.

Name: free choice (max. 8 characters)

Register usage:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return address
® R15: Contains call address

Parameter list:

1  FUCO F Functions code
= 0 Decryption
= 1 Encryption

2  RETCO F Return code
= 0 No error
= else Error(s) detected

3  PARMLEN F Length of parameter (up to 256 byte)

4  PARAM XLn Parameter

5  DATALEN F Length of data
Decryption:

132 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

 Length of data
Encryption:
 Buffer length of field DATA (512)
 Length of returned data (max. 512)

6  DATA XLn Data (in length of DATALEN)

7  CKYLEN F Length of key for en-/decryption
 Buffer length of field CRYPTOKEY (64)
 Length of returned key (max. 64)

8  CRYPTOKEY XLn Returned key (in length of CKYLEN)

9  MSGLEN F Message length
 Length of message buffer (field MESSAGE) (128)
 Length of returned Message length (max. 128)

10  MESSAGE CLn Returned message (in length of MSGLEN)

If a message is returned (MSGLEN > 0), it is sent to the
protocol (FLM0445 …).

The returned key is not sent to the protocol.

The data DATA are stored ‘as is’ in the user header of the
FLAMFILE. If a special security is required it has to be
done by the exit.

Usage of this exit overrules the parameter COMMENT
and CRYPTOKEY, if any.

The exit is called only once if encryption of many files into
a Group-FLAMFILE (C,FLAMIN=user.*) is required. It is
called only at the beginning of the first file.

The exit is called many times for decryption of many
FLAMFILEs (D,FLAMFILE=user.*.aes). It is called after
opening each FLAMFILE.

In the DD-statement concatenated FLAMFILEs are treated
as one FLAMFILE!

Note: look for an example in FLAM.SRCLIB (KMX-
SAMPL).

FLAM V4.5 (MVS) 133
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.6 Bi-/serial compression BIFLAMK

BIFLAMK is used for compression of data record by
record. The compressed data is always returned in the
same call.

BIFLAMK is reentrant. For operation a working storage
area is needed that must be provided by the calling
program. The content of the area before the call is ignored
by BIFLAMK. All calls to BIFLAMK are totally independent
from each other. All areas can have any alignment. The
working storage area for the input record and for the
compressed record must not overlap. A compression in
place is not possible.

Name: BIFLAMK

Parameters:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return adress
® R15: Contains call adress

Parameter list:

1  FUCO F Function code
= 0 Serial compression without sample
= 8 Biserial compression with sample, serial post com-

pression of the remainder and static sample
= 9 Sample record for biserial compression with serial post

compression
= 10 Biserial compression with sample, serial post com-

pression of the remainder and dynamic sample
= 11 Sample record for biserial compression with serial post

compression
= 12 Biserial compression with sample, serial post compression

and encryption of the remainder and static sample
= 13 Sample record for biserial compression with encryption
= 14 Biserial compression with sample, serial post compression

and encryption of the remainder and dynamic sample
= 15 Sample record for biserial compression with encryption

2  RETCO F Return code
= 0 Function executed
= 2 Invalid function code
= 3 Length error

- working storage too small
- return area too small
- record bigger than 32767 bytes

134 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

FLAM V4.5 (MVS) 135
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3  WORK XLn Working storage area. The working storage area must be
at least 512 bytes in size. For biserial compression the
working storage area must be at least 512 bytes + length
of return area.

4  WRKLEN F Length of working storage area in bytes

5  BUFLEN F Length of return area or maximum length of compressed
record; this size must be at least 8 bytes + 1.1 * length of
original record.

6  RECIN XLn Original record

7  RECLEN F Record length in bytes

8  COMPREC XLn Compressed record (length of this area = BUFLEN)

9  COMPLEN F Length of compressed record in bytes

The next two parameters are only used for biserial
compression:

10  SAMPREC XLn Sample

11  SAMPLEN F Sample length in bytes

136 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.7 Bi-/serial decompression BIFLAMD

BIFLAMD is used for record by record decompression of
compressed data that was created with BIFLAMK.

BIFLAMD is reentrant. For operation a working storage
area is needed that must be provided by the calling
program. The content of the area before the call is ignored
by BIFLAMD. All calls to BIFLAMD are totally independent
from each other. All areas can have any alignment. The
working storage area for the compressed record, for the
sample record, and for the output record must not overlap.
A decompression in place is not possible.

Name: BIFLAMD

Parameters:

® R1: Address of parameter list
® R13: Points to save area (18 words)
® R14: Contains return adress
® R15: Contains call adress

Parameter list:

1  FUCO F Function code
= 0 Serial decompression without sample
= 8 Biserial decompression with sample

2  RETCO F Return code
= 0 Function executed
= 1 Sample record for biserial decompression returned; no

original record was written (only during biserial
decompression)

= 2 Invalid function code or record is compressed serially
(function code = 8) or record is compressed biserially
(function code = 0).

= 3 Length error - working storage area too small - compres-
sed record smaller than 3 bytes - return area too small.

= 4 Checksum error in compressed record
= 5 Checksum error in sample record (only for dynamic

samples)
= 6 Checksum error in original record
= 7 Other errors in compressed record
= 8 Sample record is shorter as during compression (only for

biserial compression)
= 9 Compressed record too short

3  WORK XLn Working storage area. The working storage area must be
at least 512 bytes in size. For biserial compression the
working storage area must be at least 512 bytes + 1.125 *
the sum of length of the return areas.

FLAM V4.5 (MVS) 137
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

4  WRKLEN F Length of working storage area in bytes

5  BUFLEN F Length of return areas; maximum length of the original
record or the sample record in bytes

6  RECOUT XLn Original record (length of area = BUFLEN)

7  RECLEN F Record length in bytes

8  COMPREC XLn Compressed record

9  COMPLEN F Length of compressed record in bytes

The next two parameters are only needed for biserial
decompression:

10  SAMPREC XLn Sample record (length of area = BUFLEN)

11  SAMPLEN F Length of sample record in bytes

12  RETCO F Return code

138 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

3.8 Utilities

Some utilities are released that improves support form
FLAM and FLAMFILEs.

3.8.1 FLAMCKV

FLAMCKV analyses a cataloged VSAM-KSDS FLAMFILE.
It displays the procentual distribution of record lengths and
the number of records needed for one FLAM matrix (in
FLPRINT, RECFM=VB,LRECL=124).

This is very important for direct access to a VSAM-KSDS
FLAMFILE.

Please remember:
FLAM needs a complete matrix (i.e. a block of self-con-
tained compressed records) for decompression.

Even for direct access to a single record this complete
matrix is requirerd. So performance is best when this
matrix is stored in one VSAM record.

If the VSAM record is too small to fit a complete matrix,
FLAM has to read or write mutiple records. This
decreases perfomance.

These requirements are not so important for a small
amount of data. But if thousands or millions of records are
stored it becomes more and more relevant.

Example:

//CKV EXEC PGM=FLAMCKV
//STEPLIB DD DSN=FLAM.LOAD,DISP=SHR
//FLPRINT DD SYSOUT=*
//FLAMFILE DD DSN=USER.XMLDAT1.ADC,DISP=SHR

FLAM V4.5 (MVS) 139
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

FLPRINT protocol:

* FLAMCKV, a program of FLAM utilities * copyright (c) 2014 by limes
datentechnik gmbh

Utility to check a VSAM-KSDS FLAMFILE for proper settings

Data Set Name : USER.XMLDAT1.ADC

RECSIZE : 4,096 CINV : 16,384 RKP : 0 KEYLEN : 34
High used relative byte address (HURBA): 737,280

Number of Records : 164
Number of Bytes : 172,216

Min. RECSIZE : 968 Max. RECSIZE : 1,186

Number of VSAM-records needed for one FLAM-matrix:
 1 : 164
 2 : 0
 3 : 0
 4 : 0
 5 : 0
 6 : 0
 7 : 0
 8 : 0
 9 : 0
10 : 0
 > : 0

Record length distribution:

RECSIZE No. Records in Percent
-------+---------------+----------
< 10 % 0 0
< 20 % 0 0
< 30 % 164 100
< 40 % 0 0
< 50 % 0 0
< 60 % 0 0
< 70 % 0 0
< 80 % 0 0
< 90 % 0 0
<100 % 0 0
 100 % 0 0

164 VSAM-KSDS records are stored in the FLAMFILE. Only one record is to be read
for one complete matrix., this is best.

If you see many records >10 (i.e. more than 10 VSAM records are to be read for one
matrix) it is recommended to reorganize the KSDS file: decompress and compress it
again with a longer RECSIZE (and probably CISIZE) for the new FLAMFILE. You can
use the FLAM subsystem (if available on your machine) for FLAMIN file, so no original
data are stored even temporarily to disk.

140 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

In this example all records have lengths about 30% of the cataloged RECSIZE. The file
could be cataloged with a shorter RECSIZE parameter.

Having a high variation in the record length distribution you probably have very
inhomogeneous data (different record lengths, record types, …), so one matrix differs
highly from the other in length.

Having max. record length and one matrix per record is best. But increasing the
cataloged RECSIZE is required when many records are needed for one matrix.

FLAM V4.5 (MVS) 141
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.8.2 FLAMCTAB

FLAMCTAB reads a file (DD-name TABLE) and creates a
translation table module (look for parameter TRANSLATE)
from the input data in an output LOAD library (DD-Name
FLAMLIB).

So it is no longer necessary to use an Assembler source
with assembling and binding a loadable module.

A translation table consists of 256 byte of data. These
data have to be stored in the input file. This file may have
any data organization or format, as required by your
organization.

Records with an asterisk '*' in the first column are
regarded as comment lines.

Input data exceeding 256 bytes are truncated to 256
bytes, a warning will be logged and the program ends with
cond code 4.

Shorter input leads to an unexpected EOF (end of file).

The file may be edited with ISPF or any other editor or
program. But it is recommended to use the table editor of
the FLAM (Windows) distribution. You can create any
table interactively. So it is automatically error-checked.
Transfer this file in binary mode to host and use it as input
for FLAMCTAB.

An 8 byte module name is used as a parameter in the
EXEC statement .

Returncodes are the same as in FLAM.

The LOADlib FLAMLIB requires module FLAMTR11 from
the FLAM distribution.

142 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 3 Interfaces

Example:

//TAB EXEC PGM=FLAMCTAB,PARM=TRAEDOS
//STEPLIB DD DSN=FLAM.LOAD,DISP=SHR
//FLPRINT DD SYSOUT=*
//FLAMLIB DD DSN=FLAM.LOAD,DISP=SHR
//TABLE DD DSN=USER.TABLE.DAT,DISP=SHR

and the protocol FLPRINT:

FLAMCTAB, a program of FLAM utilities Copyright (C) 2014 by limes
datentechnik gmbh 10:17:29 8/27/2014

Creates a translation table module from an 256 byte input file, loadable by
FLAM

TABLE file: USER.TABLE.TAB

To create : Member TRAEDOS in LOAD library FLAMLIB

DONE SUCCESSFULLY.

There, translation table module TRAEDOS is created. The
input data are stored in the file USER.TABLE.DAT, the
library FLAM.LOAD is the STEPLIB library as well as
FLAMLIB. The protocol is printed directly to the JES log.

„DONE SUCCESSFULLY“ means that the table module
was created and stored. The input data were exactly 256
bytes (no warnings, no error messages).

Now FLAM is able to use this module by entering the
parameter TRANSLATE=TRAEDOS when FLAMLIB is
concatenated to STEPLIB in the Job.

Take care: if FLAMLIB is integrated in the LINKLIST chain
of the system, you have to refresh the member index
using the console command LLA REFRESH before first
using of the new module.

FLAM V4.5 (MVS) 143
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Interfaces Chapter 3

3.8.3 FLAMDIR

FLAMDIR reads a FLAMFILE (DD-name FLAMFILE) and
logs the directory of the compressed/encrypted files. The
output (DD-name FLPRINT) looks like an ISPF panel 3.4
or option ‚I’ in FLAM start panel or FLTOC clist.

Using the FLAM-parameter „D,SHOW=DIR“ you still get a
full protocol of the directory of the FLAMFILE.

But using FLAMDIR the protocol is a conveniently laid out
short summary of the directory of a Group FLAMFILE.

Example:

//DIR EXEC PGM=FLAMDIR
//STEPLIB DD DSN=FLAM.LOAD,DISP=SHR
//FLPRINT DD SYSOUT=*
//FLAMFILE DD DSN=USER.ARCHIV.ADC,DISP=SHR

and protocol FLPRINT:

* FLAMDIR, a program of FLAM utilities * copyright (c) 1999-2014 by limes
datentechnik gmbh

*
* Table of Contents of FLAMFILE USER.ARCHIV.ADC
*
* Original File Name System ORG RECFM RECSI BLKSI Space
*---
*
 FLAMV43A.ADATA(BIFLAMD) zOS SEQ VB 8184 27998 91150 KB
 FLAMV43A.ADATA(BIFLAMK) zOS SEQ VB 8184 27998 91150 KB
 FLAMV42A.CLIST($FABOUT) zOS SEQ FB 80 27920 250 KB
 FLAMV43A.CLIST(CUST) zOS SEQ FB 80 27920 250 KB
 FLAMV43A.CLIST(FLAMLIBS) zOS SEQ FB 80 27920 250 KB
 FLAMV43A.LISTEN.ADC zOS SEQ FB 512 23040 5050 KB
 FLAMV42A.LOAD(BIFLAMD) zOS SEQ U 0 6144 3450 KB
 FLAMV42A.LOAD(BIFLAMK) zOS SEQ U 0 6144 3450 KB
.
.

In each row the filename, the creating system, its
organization, data format, recordsize, blocksize, and the
amount of space are printed.

If the FLAMFILE was created on a system other than z/OS
the space column is empty.

144 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 4:

Method of Operation

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

Content

4. Method of Operation 3

4.1 Processing of file with the utility 4

4.1.1 Compression 4

4.1.2 Decompression 5

4.2 File processing with the FLAM subprogram 6

4.2.1 Compression 6

4.2.2 Decompression 7

4.3 Processing of records 8

4.3.1 Compression 8

4.3.2 Decompression 9

4.4 User I/O 10

4.5 User exits 14

4.5.1 Utility 14

4.5.1.1 Compression with user exits

EXK10, EXK20 14

4.5.1.2 Decompression with user exits

EXD10, EXD20 15

4.5.2 Record level interface 16

4.5.2.1 Compression with user exit EXK20 16

4.5.2.2 Decompression with user exit EXD20 17

4.6 Bi-/serial compression 18

4.7 Bi-/serial decompression 19

4.8 The FLAMFILE 20

4.8.1 General description 20

4.8.2 Group file 25

4.9 Heterogeneous data exchange 26

4.10 Code Conversion 28

4.11 Transformation of file formats 29

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

4. Method of Operation

We discussed in the previous chapters where
compression is useful, which functions are offered by
FLAM and the use of these functions in different contexts.

In this chapter we discuss the principles of operation from
an internal view.

We have to make a distinction between FLAM as a utility
for processing whole files (which may be called as an
independent main program or as a subprogram) and an
interface for processing on record level (the application
exchanges single records with FLAM).

Utility FLAM as a utility can be started on job control level via a
job control command. Parameters define the mode of
operation. Depending on the operating system,
parameters may be supplied as a part of the command or
may be entered via the screen.

In addition can be parameters read from a parameter file.
This file can be assigned to the process using job control
commands or command parameters.

Subprogram FLAM as a subprogram offers the same functionality as
used as a main program. The difference is, that this time
FLAM is called from an application or a driver program. It
is possible to specify parameters with the call.

Record Level Interface Using the record level interface a user program may
control compression and decompression. FLAM maintains
the compressed file beyond that interface. It is possible
that an application program processes more than one
compressed file at the same time. To the application
program the FLAM record level interface behaves in the
same way as an operating system interface for file access.
The difference is, that the file is stored compressed and
that the interface is the same on all operating systems.

User I/O The user interface for I/O allows FLAM to use user defined
file access methods instead of the operating system
defined ones. This is possible under the utility for the
original file and under the FLAM record level interface for
both original file and compressed file FLAM.

User Exits User exits allow pre- and post processing of records
before compression and after decompression under FLAM
as utility as well as pre- and post processing of
compressed records under both FLAM as utility and FLAM
record level interface. E.g., this user exits can be used for
encryption purposes or for selective processing of original
data.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

4.1 Processing of file with the utility

4.1.1 Compression

Data flow during compression

FLAM reads the uncompressed records from the original
file, compresses them and writes them into the
compressed file.

To do so FLAM needs specifications about compression
mode and file format of both original file and compressed
file.

The resulting compressed file can be decompressed with
the FLAM utility, with the FLAM subprogram or with the
FLAM record level interface.

Optionally a protocol is printed.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMIN
file to be
compressed

protocol

FLAMPAR

parameters

FLAM
parameters

COMPRESS..

library

FLAMFILE

compressed
file

FLPRINT

messages

Chapter 4 Method of Operation

4.1.2 Decompression

Data flow during decompression

FLAM reads the compressed records from the
compressed file, decompresses them and writes them into
the target file.

If the file attributes of the original file are unknown (no file
header available) the user has to specify the file format of
the target file. By default FLAM will create a target file with
variable record length.

On fact, for decompression both compressed file and
target file must be assigned to FLAM.
Optionally a protocol can be printed.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMFILE

compressed
file

protocol

FLAMPAR

parameters

FLAM
parameters

DECOMPRESS..

library

FLAMOUT

uncompressed
file

FLPRINT

messages

Method of Operation Chapter 4

4.2 File processing with the FLAM
subprogram

4.2.1 Compression

Data flow during compression

FLAMUP reads - similar to FLAM - the uncompressed
records from the original file, compresses them and writes
them into the compressed file.

Both compressed file and target file must be assigned to
FLAMUP.

File parameters may be defined with the FLAMUP call or
can be provided via a parameter file.

Optionally a protocol can be printed.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMIN
file to be
compressed

protocol

FLAMPAR

parameters

FLAMUP
user-
program

library

FLAMFILE

compressed
file

FLPRINT

messages

Chapter 4 Method of Operation

4.2.2 Decompression

Data flow during decompression

FLAMUP reads - similar to FLAM - the compressed
records from the compressed file, decompresses them
and writes them into the target file. The target file must be
allocated in the same format as the original file or as
specified by the user.

FLAMUP needs for decompression specifications about
the target file and the compressed file - similar as with
decompression with the FLAM utility.

Parameters may be defined with the FLAMUP call or can
be provided via a parameter file.

Optionally a protocol can be printed.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMFILE

compressed
file

protocol

FLAMPAR

parameters

FLAMUP
user-
program

library

FLAMOUT

uncompresed
file

FLPRINT

messages

Method of Operation Chapter 4

4.3 Processing of records

4.3.1 Compression

Data flow during compression

The user application passes the records via the record
level interface directly to FLAM. FLAM collects these
records until the maximal number of records within a block
(MAXRECORDS) is hit or the provided buffer (MAX-
UFFER) is filled up. Then the data is compressed and
written to the compressed file. The block structure is
invisible to the user program. The user program only
interacts on record level with FLAM, FLAM creates blocks
and initializes compression autonomously.

The record level interface is controlled from the user
program via different functions (FLMOPN, ..., FLMCLS).

Sequence of function calls:

1. FLMOPN The record level interface is opened for output. This
function call may be followed by FLMOPD and FLMOPF if
parameter specification is required.

2. FLMPHD Sending file header information (optional).

3. FLMPUT Sending a record. This function call must be repeated until
all records are passed to FLAM.

4. FLMCLS Closing the interface and optionally receiving of statistics.
The printout of a protocol and the definition of parameters

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLMPHDuser
program

libraryfile to be
compressed

FLAMFILE

compressed
file

FLMOPN
FLMOPD
FLMOPF

FLMPUT

FLMCLS

Chapter 4 Method of Operation

in a parameter file is not provided with the record level
interface.

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

4.3.2 Decompression

Data flow during decompression

The user program receives the decompressed records via
the record level interface directly from FLAM. Records can
be retrieved sequentially or randomly using keys. FLAM
reads the compressed file block by block and
decompresses the block autonomously. For the user
program this process is invisible. The end of the
compressed file or the end of an original file within a
concatenated compressed file is signalled to the user
program via a return code.

The record level interface is controlled from the user
program via different functions (FLMOPN, ..., FLMCLS).

Sequence of function calls:

1. FLMOPN The record level interface is opened for input. This
function call may be followed by FLMOPD and FLMOPF if
parameter specification is required.

2. FLMGHD Receiving file header information (optional). This function
can be applied repeatedly if a concatenated compressed
file contains more than one file header.

3. FLMGET Receiving of the decompressed original record. This
function can be executed repeatedly, until all record have
been received from FLAM or until FLAM was closed with
the function FLMCLS.

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLMGHDuser-
program

library

uncompressed
file

FLAMFILE

compressed
file

FLMOPN
FLMOPD
FLMOPF

FLMGET
FLMLOC

FLMCLS

Chapter 4 Method of Operation

4. FLMCLS Closing the interface and optionally receiving of statistics.
he printout of a protocol and the definition of parameters in
a parameter file is not provided with the record level
interface.

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

4.4 User I/O

The user can replace the FLAM file accesses methods
with own file access methods by using the User I/O
Interface. These access methods are used by the FLAM
utility for accessing the original file, to the compressed file
and for the target file.

In the record level interface, however, only access
routines for the compressed file exist.

The use of user defined access routines can be specified
for each file separately via the parameters
DEVICE=USER or IDEVCE, ODEVICE. However, the
user provided I/O routines must be linked to the FLAM
utility or to the FLAM record level interface before.

The following routines must be provided by the user: Open
and Close (USROPN, USRCLS), sequential Read and
Write (USRPUT, USRGET), optionally random access
Read and Write (USRPKY, USRGKY), Delete and
Positioning (USRDEL, USRPOS).

How it works:

1. USROPN: For each allocated file this function is called once and only
once. A working area of 1024 byte is passed to the
routine. This working area acts as a file specific memory
and is passed from function to function until USRCLS is
called.

Files are identified via symbolic file names. The access
mode is specified in parameter OPENMODE: INPUT,
OUTPUT, INOUT, OUTIN. File format and file attributes
are specified in the parameter RECFORM, RECSIZE,
BLKSIZE, etc.. These settings may be adapted to special
requirements.

Via predefined and user defined return codes the
successful execution as well as special status information
and errors can be reported to the higher layers.

2. USRCLS: This function is called to close the file. The 1024 byte
working area reserved for this file is deallocated after
returning control to FLAM.

3. USRGET: This function is called to retrieve the next record. The
maximal amount of characters that may be returned are
specified in parameter BUFLEN. If it is necessary to
truncate the record this must be signalled via a return
code. Also the end of file condition must be signalled via a
return code. For each record returned the record length
must be returned as well (also for records with fixed
record length!).

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

4. USRPUT: This function is called to write a record. If it is not possible
to write the record in full length the return code record
truncated must be reported to the higher layers. Another
possibility is to fill the record with the padding character
(PADCHAR) as specified in USROPN and to return the
corresponding return code.

5. USRPOS: This function is called to move the current read or write
pointer. Relative positioning (forward and backward) from
the current position as well as absolute positioning from
file start or file end is possible.

6. USRGKY: With this function a record with a specified key is read.
The corresponding key is contained in the record area at
that position and in that length as specified with the
parameter (KEYDESC) during USROPN. Reading via key
also sets the current read pointer for following USRGET
function calls. If no record is found this must be signalled
via a return code. Afterwards it is possible to read the
record with the nearest higher key with function USRGET.

7. USRPKY: With this function a record with a specified key is updated
or inserted. If the record has the same key as the record
last read, the old record is replaced by the new record.
Otherwise the record is inserted. If this is not possible
(duplicate keys may be forbidden) this must be signalled
via an appropriate return code. The writing of records with
a key also updates the position of the current write pointer.

8. USRDEL: With this function the last read record is deleted.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

Schematic presentation of compression with User I/O:

Parameter for FLAM or FLAMUP:

COMPRESS, IDEVICE = USER, DEVICE = USER

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM USROPN USRCLS USRGET USRPUT

start of program

FLAMIN

comment

FLAMFILE

FLAMIN

(repeat until matrix is filled up)

open compressed file

open input file

read record from FLAMIN

FLAMIN read record from FLAMIN

FLAMFILE put record in FLAMFILE

(repeat until matrix is filled up)

FLAMFILE put record in FLAMFILE

FLAMIN read record from FLAMIN

FLAMIN read record from FLAMIN

FLAMIN end of file in FLAMIN

FLAMFILE put record in FLAMFILE

(repeat until matrix is filled up)

FLAMFILE put record in FLAMFILE

FLAMFILE close compressed file

FLAMIN close input file

end of program

Chapter 4 Method of Operation

Schematic presentation of decompression with User I/O:

Parameter for FLAM or FLAMUP:

DECOMPRESS, ODEVICE = USER, DEVICE = USER

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM USROPN USRCLS USRGET USRPUT

start of program

FLAMFILE

comment

FLAMFILE

(repeat until FLAM-Fileheader is read)

open compressed file

read record from FLAMFILE

FLAMFILE read record from FLAMFILE

FLAMFILE read record from FLAMFILE

(repeat until first matrix is read)

FLAMFILE read record from FLAMFILE

FLAMOUT put record in FLAMOUT

FLAMFILE

put record in FLAMOUT

FLAMFILE read record from FLAMFILE

FLAMOUT

read record from FLAMFILE

(repeat until all uncompressed records from matrix are written)

FLAMOUT put record in FLAMOUT

FLAMFILE close compressed file

FLAMOUT close output file

end of program

FLAMOUT open output file

FLAMFILE end of file in FLAMFILE

(repeat until all uncompressed records from last matrix are written)

Method of Operation Chapter 4

4.5 User exits

4.5.1 Utility

4.5.1.1 Compression with user exits EXK10,
EXK20

Data flow of compression with user exits

During compression it is possible to call additional routines
for pre processing of original records and for post
processing of compressed records.

E.g., pre processing may perform a selection of specific
records or fields.

Post processing may introduce additional encryption of the
compressed record.

Instead of using the more complicated record level
interface record orientated processing can be done often
with user exit EXK10.

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMIN
file to be
compressed

protocol

FLAM
parameters
COMPRESS..
EXK10=<name>,
EXK20=<name>

library

FLAMFILE

compressed
file

EXK20

EXK10

Chapter 4 Method of Operation

4.5.1.2 Decompression with user exits EXD10,
EXD20

Data flow during decompression with user exits

During decompression it is possible to call additional
routines for pre processing of compressed records and for
post processing of original records.

E.g., pre processing may decrypt encrypted records.

Post processing may perform a selection of specific
records or fields.

Instead of using the more complicated record level
interface record orientated processing can be done often
with user exit EXD10.

FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAMFILE

compressed
filed

protocol

FLAM
parameters
DECOMPRESS..
EXD20=<name>,
EXD10=<name>

library

FLAMOUT

uncompressed
file

EXD10

EXD20

Method of Operation Chapter 4

4.5.2 Record level interface

4.5.2.1 Compression with user exit EXK20

Data flow during compression with user exit

The user exit for compressed records can also be used
under the record level interface.

The actual interception or original records by the interface
is not affected.

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLMPHDuser-
program

libraryfile to be
compressed

FLAMFILE

compressed
file

FLMOPN
FLMOPD
FLMOPF

FLMPUT

FLMCLS

EXK20

Chapter 4 Method of Operation

4.5.2.2 Decompression with user exit EXD20

Data flow during decompression with user exit

The user exit for compressed records can also be used
under the record level interface.

The actual interception or original records by the interface
is not affected.

FLAM V4.5 (MVS) 19
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLMGHDuser-
program

library

uncompressed
file

FLAMFILE

compressed
file

FLMOPN
FLMOPD
FLMOPF

FLMGET
FLMLOC

FLMCLS

EXD20

Method of Operation Chapter 4

4.6 Bi-/serial compression

Data flow during compression with BIFLAMK

BIFLAMK processes original records and sample records
on a record by record basis.

When only serial compression is used (function code 0)
BIFLAMK only processes original records and compiles
them into compressed records.

If bi-serial compression with sample (function codes
8,10,12,14) is used an original record is processed in
combination with a sample record to create a compressed
record. For storage of the sample records (function codes
9,11,13,15) only the sample record is processed to create
a compressed record.

20 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

pattern
 record
(optional)

uncompressed
record

workarea

compressed
record

BIFLAMK

Chapter 4 Method of Operation

4.7 Bi-/serial decompression

Data flow during decompression with BIFLAMD

BIFLAMD processes compressed records record by
record if necessary in combination with a sample record -
and creates an original record or a sample record.

During serial decompression (function code 0) the
compressed record only is processed and will create
always an original record. Sample records are not
necessary.

During bi-serial compression (function code 8) always one
compressed record is processed at a time. Depending on
compression the sample record is read in addition and the
original record is created. If a sample record was
compressed during compression, this sample record is
reconstructed during decompression. This situation is
signalled with a return code of 1.

FLAM V4.5 (MVS) 21
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

pattern
record
(optional)

compressed
record

workarea

uncompressed
record

BIFLAMK

Method of Operation Chapter 4

4.8 The FLAMFILE

4.8.1 General description

Independently from the Frankenstein-Limes compression
method FLAM establishes a concept for file conversion
that satisfies compatibility requirements as much as
possible. The compressed file created by FLAM is a
logical image of the records of the original file. This is the
basis for any conversion with FLAM.

The compressed file, the FLAMFILE, is stored by default
as a sequential file in accordance with the above-
mentioned principle (for random access, index sequential
storage is also possible).

The problems which occur with uncompressed files when
the requirements are comparable must therefore not be
simply ignored due to the fact that FLAM is being used.
Some of these problems are made easier to solve by the
FLAM concept. Others remain despite FLAM and must
therefore be solved along application-specific or
organizational lines as before, the only difference being
that the original file can be substituted by a FLAMFILE.

FLAM does not solve the problem of incompatible record
and field structures in heterogeneous environments.
Sometimes users are totally unaware about these
problems. FLAM offers user exits that allow to embed
special conversion routines. As FLAM is designed as an
open system, it will be possible to offer standard solutions
for special problem areas in the future.

FLAM requires, that the original records are passed to
FLAM record by record. The chosen compression method
implies that FLAM works asynchronously. N original
records may result in k compressed records where n is
unequal k. This can be a problem in special cases.

The FLAMFILE is always created with a fixed record
length that may be specified by the user. This results
usually in compressed records of equal length. This is
necessary because some DP systems only support files
with equal record length. This is also true for some data
transmission products.

The smallest record length is 80 byte. This allows to
process the FLAMFILE in the punched card format (RJE
file transfer!). The upper limits are defined by the
environment: where the file is stored and which products
are used to transfer the file. The upper limit defined by
FLAM is 32764 byte.

However, the user may define the format of the record as
"variable length" or "fixed length". For a fixed length record
that is not filled up, padding is applied.

22 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

It is also possible to define different block sizes to optimize
the I/O operations, file transfer and storage requirements.
This flexibility makes it mostly possible to find a suitable
solution for all participating software and hardware
environments as well as for special applications.

The FLAMFILE is principally a binary file where all 256 bit
combinations are allowed. With this code the FLAMFILE
can only be transmitted in transparent mode (MODE=CX8
and VR8).

If transmission on a 7-bit line is performed, file transfer
products expand such binary files in a way that ASCII
compatibility is guaranteed. Some products convert each
half byte into one byte, other products expand 3 bytes into
4 bytes.

If the original file contains only printable characters, FLAM
can provide a different code format of the compressed file
(MODE=CX7). In this case characters from the original file
are not combined with FLAM-descriptors but simply
copied into the compressed file. This mode is mostly more
efficient than MODE=CX8 with following expansion 3 to 4.

The FLAM-descriptors itself consist under MODE=CX7
only from printable characters that are unambiguous in the
international code systems ASCII and EBCDIC. These are
all small and big Latin letters, the ten digits and the blank.
Any kind of control character, special characters, umlauts
are excluded.

The advantage of this method is that the resulting
FLAMFILE can be converted freely between ASCII and
EBCDIC and vice versa at any time between compression
and decompression. If the conversion is not handled by
the data transmission system or on the data transmission
path, the user may use the FLAM user exits and can apply
the appropriate code conversions as part of the
compression/decompression process.

FLAM always works in MODE=CX7 in respect to the code
system of its host. If source and target are of the same
code system (ASCII or EBCDIC) no conversion is
necessary. If source and target are of different code
systems, FLAM requires that the FLAMFILE is converted
to the code system of the target host system first to
decompression.

If the FLAMFILE in MODE=CX7 shall be transmitted via a
7-bit line as well as via an 8-bit line, it will be necessary to
analyse the actual situation to maintain full compatibility. It
must be considered, that FLAM offers integrated code
conversion functions not on all platforms. However, this
problem can be solved with MODE=CX7.

FLAM V4.5 (MVS) 23
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

Because the FLAMFILE has records of equal length, the
last record is filled with a padding character if fixed record
format is used. In MODE=CX7 this padding character is
blank, otherwise binary zero. If a variable record format is
used, no padding is done for the last record - the last
record is shortened instead.

Each record in the FLAMFILE has (internal) overhead: the
FLAM syntax, which organizes a frame for the
compressed data to fulfil the different requirements. The
overhead is the same for each record: 4 byte in 7-bit
format and 6 byte in 8-bit format. The user should
consider this when he defines the record length for the
FLAMFILE. The shorter the record length, the bigger the
overhead. In addition the FLAMFILE contains the following
syntactical elements: an optional file header for each
original file, a compulsory block header for each matrix,
etc.

Usually the FLAMFILE starts with a file header. This file
header consists of a system independent on a system
dependent part. The file header contains various
information about the original file. During decompression
FLAM will use this information - if not provided otherwise -
to create the decompressed target file.

It is possible to concatenate multiple compressed files. In
this case the FLAMFILE contains multiple file header. The
FLAM utility ignores these file headers during decompres-
sion, and will use only the first one. However, the others
appear in the protocol.

With this feature FLAM is prepared for the insertion of
identical file headers into archive files, a feature that may
help to identify a file even in the case of hardware faults.

If the FLAM record level interface is used, the different
files can be separated during decompression.

An empty file is converted into a FLAMFILE that consists
only out of a file header. This implies that an empty file no
longer must be treated as a special case. The usual
problems with empty files in the job command language
and during file transfer belong to the past.

With a parameter it can be specified if and which file
header shall be created during compression.

The decompression function can be used to only print out
the file header without doing the actual decompression.
This allows a quick information about the origin of the
compressed file.

24 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

One block header is created per matrix. This block header
contains all the necessary information for proper
decompression even without a file header. However, in
this case the user has to specify the target format via
parameter, JCL or catalogue entry if another format than
sequential and variable record length shall be created.

The block header contains also all information that is
needed by the FLAM nucleus for decompression, e.g.
MODE, version, matrix size, etc. This information
guarantees the upward compatibility of FLAM.

The individual records of the FLAMFILE contain their
length redundantly. If the FLAMFILE has variable record
length an additional length field of 2- or 4-bytes length is
part of each record. In MODE=CX7 on PC standard record
separator characters of length 1 or 2 are used. Therefore
the record length is not a physically unique size within a
heterogeneous environment.

Each FLAMFILE record created in 8-bit code is protected
against manipulations via a 16-bit checksum. In addition,
so called block pointers allow synchronisation (and restart
on block level), if data cannot be decompressed properly
because of manipulation or hardware faults.

A FLAMFILE created in 7-bit code does not contain
checksums, because this would inhibit code conversion
from ASCII to EBCDIC and vice versa. Instead the
number of bytes per record is checked. This function
detects for example if a non 1:1 code conversion was
applied. This may happen if printer control characters or
tabulator characters are not converted 1:1. However, this
does not comply with the preposition that the file must only
contain printable characters.

It has a clear advantage to use the 8-bit format if it is not
really necessary to work in 7-bit format.

Compression is faster, the compression ratio is better, the
compressed file is better protected in respect to data
security and data integrity and transmission of these files
is faster in transparent mode. Also more possibilities for
data encryption exist.

The reason is, that a 7-bit FLAMFILE can only be
encrypted by randomising the character string. Other
encryptions do not comply with the purpose for which
these files were created (see above).

A FLAMFILE in 8-bit format, however, can be encrypted
with all kinds of additional encryption methods to create a
FLAMFILE not compatible with the market version.

FLAM V4.5 (MVS) 25
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

For such conversions, the original state of the FLAMFILE
as created by FLAM must be restored before the
FLAMFILE is decompressed. In MODE=CX7 the
FLAMFILE in addition must be converted into the code
system of the host where the decompression is
performed.

In the case that 1:1 code conversions shall be performed
before compression or after decompression, FLAM offers
the possibility to convert from EBCDIC to ASCII and vice
versa as well from one EBCDIC dialect to another
EBCDIC dialect. These conversions are implemented via
code tables that can be replaced by the user. It is possible
to use user defined code tables as well for encryption
purposes. For all conversion problems not mentioned so
far the user has the possibility to use the user exits for
manipulation of uncompressed data. This is independent
from the MODE parameter. The required conversions can
be performed in connection with record processing.

Independently from the user exits, the record level
interface provides access on record level before
compression and after decompression. Using this
possibility the user may process original data that
otherwise could not be handled by FLAM. This interface
also allows the integration of FLAM with user applications
and software packages.

Also in the case when a FLAMFILE was created without a
file header (HEADER=NO) FLAM can decompress this
FLAMFILE.

Principally a restoration of a damaged FLAMFILE is
possible but requires the consultation of an expert from
the manufacturer. Such damages are caused exclusively
by hardware or material faults or by unauthorised
manipulation.

26 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

4.8.2 Group file

The ability to store several compressed files in one
FLAMFILE has been realized in the form of the group file.

If several files are read during compression (see chapter
3.1.4), FLAM generates for each input file a file header
(parameter HEADER=YES, default) in the FLAMFILE. A
number of FLAMFILEs are written physically, in sequential
order one after the other. (If the parameter HEADER=NO
is set, no details about the respective file are stored in the
group file. When decompressed, this file is then no longer
recognized as a FLAMFILE containing a number of
compressed files and it can only be decompressed
altogether.)

The file type and format of a group file can be adapted to
suit any requirements, exactly as in FLAMFILEs.

The parameter SHOW=DIR can be used to display the
details of all of the compressed files in this group file,
without the group file being decompressed.

FLAM is able to decompress each individual file of this
group file by specifying a selection rule (see chapter
3.1.4.3). The decompressed file can be specified by
means of a command or FLAM creates the file
dynamically and catalogues it.

Libraries are compressed into a group file by FLAM on a
member-by-member basis, i.e. it would be possible to
decompress each member into a separate file using an
appropriate conversion rule. Accordingly, a number of
individual files can be used to generate library members.

This group file allows libraries that have been generated
under a range of different operating systems to be
exchanged between heterogeneous operating systems in
a compatible way.

If neither a selection rule nor a conversion rule is
specified, the compressed files are decompressed into a
specified file as in earlier FLAM versions; i.e. all of the
originally different files are now positioned one after the
other, decompressed. Conversion is executed in
accordance with the file attributes of the output.

Note: If FILEINFO=NO was set when the group file was
being created, no file name was stored for the
compressed data in question. This also means that there
would be no file name available for creating the files.

Despite this, the compressed data can still be accessed
and appropriate conversion rules compiled by means of
the internal file names FILE0001 (for the 1st file) through
FILE9999 (for the 9999th file).

FLAM V4.5 (MVS) 27
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

4.9 Heterogeneous data exchange

Compressed files may be ported to a target system via file
transfer or via tapes, cartridges, etc. It is not necessary
that source system and target system are of the same
type. However, necessary requirement is, that a file
transfer feature exists or that a compatible tape or
cartridge format exists.

If these requirements are fulfilled, data exchange is
possible on both systems if FLAM exists and is installed.

All FLAM versions are upward compatible. That means,
that systems with both FLAM older and newer version can
compress/decompress in the old manner.

Since version 2.x the different formats of the compressed
data are compatible on all systems where FLAM exists.

For data exchange between heterogeneous and
homogeneous systems only logical data formats should
be compressed with FLAM. Physical data formats cannot
be reproduced identically on a physically different system.

Different methods for compression exist. With ADC, VR8
and CX8 data is compressed in 8-bit mode, with CX7 in 7-
bit mode. For data exchange between mainframes any
mode can be used therefore.

It is also necessary to check if the file transfer works
transparently for 8-bit binary data. If yes, an 8-bit method
(which can be decompressed on the target system) should
be chosen for compression.

If file transfer is not transparent the CX7 mode must be
selected. The file is only allowed to contain printable
characters that can be converted 1:1 during the file
transfer. Also in this case it should be checked if the
selected compression mode is available on the target
system.

For file transfer also transfer mode, record length and
record format (variable or fixed) must be considered. It is
possible that on the target system it is necessary to insert
or delete length fields before decompression. Some file
transfer products allow only certain record length and
certain record formats.

One parameter that must be provided with the same value
on both systems is the buffer size (MAXBUFFER) for the
compression of one data block. This parameter has on
mainframes the maximum value of 2.5 MB. FLAM uses on
mainframes two alternating buffers, so double the memory
is needed.

File attributes of the original file are meaningless for data
exchange. The reason is that the file transmitted in
sequential form is the FLAMFILE.

28 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

Within the target system the decompressed data can be
stored in a file with any valid file organization. This may be
an organization that allows for sequential, index sequential
or random access.

Important is, that the data must comply to this organization
(e.g., a record key must be sorted in ascending order for
index sequential organization).

Files can be compressed immediately during or after
processing and can remain stored in compressed form
until they are transmitted. Or they can be stored in
uncompressed form and are compressed directly before
transmission.

FLAM V4.5 (MVS) 29
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

4.10 Code conversion

During compression and decompression any 1:1 code
conversions can be applied to the original data.

For the conversion from EBCDIC to ASCII a standard
table is provided. It is also possible to load a user defined
table by specifying its name (TRANSLATE).

Generally spoken it is better to apply code conversion
during decompression because the compression algorithm
treats some frequent characters (like zero or blank) in a
special way. Code conversion could reduce the
compression effect. Also, because of the smaller
character set of the ASCII code, it may happen that
characters not contained in the ASCII code set are lost
during code conversion, which cannot be reconstructed for
decompression.

A delicate problem during the exchange of compressed
data are index sequential files. Caused by the conversion
the binary or alphanumeric keys may be out of order
because of different collating sequences in the code
systems. No problem, however, exists for keys that
consist out of printable letters or for printable numeric
keys.

A special conversion before or after processing with FLAM
is necessary for index sequential files that contain binary
and alphanumeric keys.

30 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 4 Method of Operation

4.11 Transformation of file formats

Target files may be created during decompression with a
file organization and record format differing from the
original file.

This is especially true for compressed files received from
another operating system.

If no other specifications are made by the user, all files
that were compressed under the same operating system
are reconstructed using the information in the file header.

In addition it is possible to convert the compressed file into
any file format supported by FLAM on the target system.

However, dependencies between file organization and
record format may exist:

If the file is transformed to fixed record length, the original
records can be longer or shorter than the new record
length.

Longer original records are truncated if parameter
TRUNCATE=YES is specified.

Shorter original records are padded up to the new fix
record length with blanks (PADCHAR).

If an index sequential file is transformed into a sequential
file, the keys are removed if parameter KEYDISP=DEL is
specified.

If a sequential file is transformed into an index sequential
file, the original records must contain a field with key
properties (unique and sorted in ascending order).
Otherwise a printable key or arbitrary length can be
inserted at the key position (KEYDISP=NEW).

Records of length 0 or gaps within relative files are
removed if the file is converted into index sequential
format.

If relative files are converted into sequential files, gaps are
converted into records with length 0.

For a conversion into fixed format gaps are removed.

If files are converted into relative format, records of length
0 are represented as gaps, except if records of length 0
can be represented in the relative file format.

LDS files are managed on the disk by VSAM in units of
4096 bytes. If there is an "internal" format it is known only
to the user and it is not used by VSAM.

In this regard, FLAM offers support not only for
compression, but also for decompression.

FLAM V4.5 (MVS) 31
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Method of Operation Chapter 4

Through the use of the parameters IRECSIZE, IBLKSIZE,
and IDSORG=LDS for input and ORECSIZE, OBLKSIZE
and ODSORG=LDS for output, it is possible to specify
"internal" fixed record lengths with appropriate blocking.
There is no requirement for the block size to be an exact
multiple of the record length, any remainder will be
ignored.

These specifications enable every file to be converted into
an LDS format; that is, a considerably greater degree of
efficiency can be achieved during compression.

32 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 5:

Application examples

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

Content

5. Application Examples 3

5.1 JCL 3

5.1.1 Compression 3

5.1.2 Decompression 5

5.1.3 A more complex example 7

5.2 How to use the record level interface 11

5.2.1 Compression 11

5.2.2 Decompression 14

5.2.3 Random access to an

index sequential FLAMFILE 17

5.2.4 Example for the entire record level

interface 22

5.3 User I/O interface 46

5.3.1 ASSEMBLER example 46

5.3.2 COBOL example 60

5.4 How to use the user exits 66

5.4.1 EXK10/EXD10-user exits 66

5.4.2 EXK20/EXD20-user exits 70

5.5 Using FLAM with other products 73

5.5.1 Using with NATURAL 73

5.5.2 Using with SIRON 73

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

2 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5. Application examples

In the following you find some examples to explain several
FLAM functions. All examples are contained on the
installation tape in form of command procedures or source
code.

All examples were tested. However, it is possible that
certain examples cannot be executed in a particular
environment or that it is necessary to make some
adaptations.

For the COBOL programs we have tried to stay as much
independent from the operating system and the compiler
as possible. The examples were therefore tested under
BS2000 and DPPX as well as under MVS. During porting
from MVS to BS2000 and DPPX some modifications must
be made.

5.1 JCL

5.1.1 Compression

 1 //USERCP JOB 7021000F,'LIMES-06172/5919-0',CLASS=A,
 // MSGLEVEL=(1,1),MSGCLASS=X,NOTIFY=USER
 //***
 //* JOB FOR FLAM COMPRESSION
 //***
 2 //COMP EXEC PGM=FLAM,PARM='C,SHOW (ALL)'
 3 //STEPLIB DD DSN=USER.FLAM.LOAD,DISP=SHR
 4 //FLAMFILE DD DSN=USER.DAT.CMP,DISP=OLD
 5 //FLAMIN DD DSN=USER.DAT.FB,DISP=SHR
 6 //FLPRINT DD SYSOUT=*
 7 //FLAMPAR DD *
 MAXB=4096 COMPRESSION BUFFER 4 KB
 MODE=VR8 COMPRESSION MODE
 /*

(1) Job card.

(2) The FLAM program is called for compression. All information shall be recorded
in a protocol.

(3) Assignment of the library that contains all FLAM modules.

(4) Assignment of the FLAMFILE. In this example the FLAMFILE is already cata-
logued. So it is not necessary to make further specifications.

(5) Assignment of the input file for compression.

(6) Assignment of the protocol file. In this example we print the protocol directly
via JES.

(7) Assignment of a parameter file. In this example the additional parameters are
 specified directly within the job stream. All specified parameters will overwrite

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 the default parameters.

4 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

The resulting protocol is:

 1 FLM0448 COPYRIGHT (C) 1989-2005 BY LIMES DATENTECHNIK TEST 2006182
 2 FLM0428 RECEIVED: C,INFO(YES)
 3 FLM0410 DATA SET NAME : JES2.JOB01901.I0000101
 FLM0428 RECEIVED: MAXB=4096
 FLM0428 RECEIVED: MODE=VR8
 4 FLM0400 FLAM COMPRESSION VERSION 4.1A00 ACTIVE
 5 FLM0410 DATA SET NAME : USER.DAT.FB
 FLM0415 USED PARAMETER: ACCESS : LOG
 FLM0415 USED PARAMETER: IDSORG : SEQUENT
 FLM0415 USED PARAMETER: IRECFORM: FIXBLK
 FLM0415 USED PARAMETER: IRECSIZE: 80
 FLM0415 USED PARAMETER: IBLKSIZE: 3120
 6 FLM0410 DATA SET NAME : USER.DAT.CMP
 FLM0415 USED PARAMETER: MODE : VR8
 FLM0415 USED PARAMETER: MAXBUFF : 4096
 FLM0415 USED PARAMETER: MAXREC : 255
 FLM0415 USED PARAMETER: MAXSIZE : 512
 FLM0415 USED PARAMETER: DSORG : SEQUENT
 FLM0415 USED PARAMETER: RECFORM : FIXBLK
 FLM0415 USED PARAMETER: BLKSIZE : 6144
 7 FLM0408 CPU - TIME: 0.0445
 FLM0409 RUN - TIME: 0.3382
 8 FLM0406 INPUT RECORDS/BYTES: 155 / 12400
 FLM0407 OUTPUT RECORDS/BYTES: 10 / 5120
 9 FLM0416 COMPRESSION REDUCTION IN PERCENT: 58.71
10 FLM0440 FLAM COMPRESSION NORMAL END

(1) The copyright message also contains the licence number.
Here: Test licence with expiration date 182nd day in 2006.

(2) FLAM records the PARM= specification.

(3) The name of the parameter file is displayed. As parameters were given directly
in the job stream the file name generated by JES is recorded. The file name is
followed by the FLAM parameters contained in this file.

(4) The current FLAM version is recorded.

(5) The input file is recorded. Both the file name and the file attributes are
displayed.

(6) The FLAMFILE is recorded. Both the file name and the file attributes are dis-
played. Also the compression parameters used are displayed.

(7) The CPU time used and the elapsed time is recorded.

(8) The number of records and bytes for both input and output is recorded.

(9) The compression ratio is recorded in percent.

(10) The compression was terminated normally.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.1.2 Decompression

 1 //USERDC JOB 7021000F,'LIMES-06172/5919-0',CLASS=A,
 // MSGLEVEL=(1,1),MSGCLASS=X,NOTIFY=USER
 //**
 //** JOB FOR DECOMPRESSION WITH FLAM
 //**
 2 //DECOMP EXEC PGM=FLAM,PARM=DECO
 3 //STEPLIB DD DSN=USER.FLAM.LOAD,DISP=SHR
 4 //FLPRINT DD SYSOUT=*
 5 //FLAMFILE DD DSN=USER.DAT.CMP,DISP=SHR
 6 //FLAMOUT DD DSN=USER.DAT.DEC,
 // DISP=(NEW,CATLG,DELETE),
 // SPACE=(TRK,(1,1)),
 // UNIT=SYSDA

(1) Job card.

(2) FLAM call for decompression.

(3) Assignment of FLAM module library.

(4) Assignment of protocol file.

(5) Assignment of FLAMFILE.

(6) Assignment of output file. The output file is not catalogued (DISP=NEW).
Record and block length are generated according to the original file (no
DCB specification in JCL).

6 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

The corresponding protocol:

1 FLM0448 COPYRIGHT (C) 1989-2005 BY LIMES DATENTECHNIK TEST 2006182
2 FLM0428 RECEIVED: DECO
3 FLM0450 FLAMD VERSION 4.1A00 ACTIVE
4 FLM0460 DATA SET NAME: USER.DAT.CMP

FLM0465 USED PARAMETER: MODE : VR8
FLM0465 USED PARAMETER: VERSION : 200
FLM0465 USED PARAMETER: MAXBUFF : 4096
FLM0465 USED PARAMETER: CODE : EBCDIC
FLM0465 USED PARAMETER: DSORG : SEQUENT
FLM0465 USED PARAMETER: RECFORM : FIXBLK

5 FLM0482 OLD ODSN : USER.DAT.FB
FLM0482 OLD ODSORG : SEQUENT
FLM0482 OLD ORECFORM: FIXBLK
FLM0482 OLD ORECSIZE: 80
FLM0482 OLD OBLKSIZE: 3120

6 FLM0469 COMPRESSED FILE FLAM-ID: 0101
7 FLM0460 DATA SET NAME : USER.DAT.DEC

FLM0465 USED PARAMETER: ACCESS : LOG
8 FLM0456 INPUT RECORDS/BYTES: 10 / 5120

FLM0457 OUTPUT RECORDS/BYTES: 155 / 12400
9 FLM0458 CPU - TIME: 0.0456

FLM0459 RUN - TIME: 0.1688
10 FLM0490 FLAM DECOMPRESSION NORMAL END

(1) The copyright message contains the licence number.
Here: test licence with expiration date at 182nd day in 2006.

(2) FLAM records the PARM= specification.

(3) The current FLAM version is recorded.

(4) The file name for the FLAMFILE is recorded. In the following the information
contained in the FLAMFILE header is recorded: size of compression buffer,
compression mode, coding of FLAM control characters and the file attributes of
the FLAMFILE.

(5) Here all information about the original file is recorded as contained in the
FLAMFILE header.

(6) This message informs that the FLAMFILE was created by an MVS system.

(7) The file name of the output file is recorded. Because no other file attributes are
displayed, the file is created with the file attributes of the original file.

(8) The number of records and bytes for both input and output are recorded
(always true data without record length fields).

(9) The CPU time used and the elapsed time are displayed.

(10) Decompression was terminated without error.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.1.3 A more complex example

You’ll see a more complex example for compression, showing the possibilities of
FLAM.

All LIST data sets shall be compressed in ADC mode, encrypted with AES. The
FLAMFILEs shall be limited at 1MB. We expect more than 9 files..

Cause the limitation of the PARM-entry (100 bytes) we need a file for all parameters.

 1 //USERCP JOB 12345678,'LIMES-06172/59190',CLASS=A,
 // MSGLEVEL=(1,1),MSGCLASS=X,NOTIFY=USER
 //***
 //* JOB FOR FLAM COMPRESSION
 //***
 2 //COMP EXEC PGM=FLAM
 3 //STEPLIB DD DSN=USER.FLAM.LOAD,DISP=SHR
 4 //FLPRINT DD SYSOUT=*
 5 //FLAMPAR DD *

COMPRESS Start Compression
MODE=ADC Mode ‘Advanced Data Compression’
FLAMIN=USER.*.LIST Compress all LIST-Files
FLAMFILE=USER.CMPLIST.ADC01 Name of FLAMFILE, 99 files possible
SPLITMODE=SERIAL Split FLAMFILE serially
SPLITSIZE=1 at size of 1 MB
CRYPTOMODE=AES Use AES cipher mode for encryption
SHOW=NO Protocol inactivated
CRYPTOKEY=C’THIS IS A KEY FOR ENCRYPTION’
SHOW=ALL Protocol activated

 /*

(1) Job card

(2) Call FLAM without any parameters

(3) Assignment of FLAM module library.

(4) Assignment of protocol.

(5) Assignment of the parameter file. The parameters are entered directly in the job
stream. Cause the number characters ‘01’ in the FLAMFILE name FLAM is able
to create up to 99 files. The key-phrase starts with C’, there are blanks in the
parameter. The combination SHOW before and after the CRYPTOKEY
parameter suppresses the protocol of the key!

8 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

The corresponding protocol:

1 FLM0448 COPYRIGHT (C) 1989-2003 BY LIMES DATENTECHNIK TEST 2003182
2 FLM0410 DATA SET NAME : USER.USERCP.JOB04480.D0000101.? -PARFILE-
3 FLM0428 RECEIVED: COMPRESS

FLM0428 RECEIVED: MODE=ADC
FLM0428 RECEIVED: FLAMIN=USER.*.LIST
FLM0428 RECEIVED: FLAMFILE=USER.CMPLIST.ADC01
FLM0428 RECEIVED: SPLITMODE=SERIAL
FLM0428 RECEIVED: SPLITSIZE=1
FLM0428 RECEIVED: CRYPTOMODE=AES

4 FLM0428 RECEIVED: SHOW=ALL
5 FLM0400 FLAM COMPRESSION VERSION 4.0B00 ACTIVE
6 FLM0410 DATA SET NAME : USER.BIFLAMD.LIST -FLAMIN-

FLM0415 USED PARAMETER: IDSORG : SEQUENT
FLM0415 USED PARAMETER: IRECFORM: FIX
FLM0415 USED PARAMETER: IRECSIZE: 133
FLM0415 USED PARAMETER: IBLKSIZE: 133
FLM0415 USED PARAMETER: IPRCNTRL: ASA

7 FLM0414 FLAMFILE SPLIT ACTIVE
8 FLM0415 USED PARAMETER: CRYPTO : ACTIVE
9 FLM0410 DATA SET NAME : USER.CMPLIST.ADC01 -FLAMFILE-
10 FLM0415 USED PARAMETER: SPLITMOD: SERIAL

FLM0415 USED PARAMETER: SPLITSIZ: 1
FLM0415 USED PARAMETER: MODE : ADC
FLM0415 USED PARAMETER: CRYPTOMO: AES
FLM0415 USED PARAMETER: MAXBUFF : 65536
FLM0415 USED PARAMETER: MAXREC : 4095
FLM0415 USED PARAMETER: MAXSIZE : 512
FLM0415 USED PARAMETER: DSORG : SEQUENT
FLM0415 USED PARAMETER: RECFORM : FIXBLK
FLM0415 USED PARAMETER: BLKSIZE : 23040

11 FLM0435 MEMBER MAC: 23F747DB6705788A
12 FLM0406 INPUT RECORDS/BYTES: 1,771 / 235,543

FLM0407 OUTPUT RECORDS/BYTES: 49 / 25,088
13 FLM0410 DATA SET NAME : USER.ASM01AC.LIST -FLAMIN-

FLM0415 USED PARAMETER: IDSORG : SEQUENT
FLM0415 USED PARAMETER: IRECFORM: FIX
FLM0415 USED PARAMETER: IRECSIZE: 133
FLM0415 USED PARAMETER: IBLKSIZE: 133
FLM0415 USED PARAMETER: IPRCNTRL: ASA

11 FLM0435 MEMBER MAC: 5C94AB1028E5947A
FLM0406 INPUT RECORDS/BYTES: 2,136 / 284,088
FLM0407 OUTPUT RECORDS/BYTES: 59 / 30,208
FLM0410 DATA SET NAME : USER.ASM02AC.LIST -FLAMIN-
FLM0415 USED PARAMETER: IDSORG : SEQUENT
FLM0415 USED PARAMETER: IRECFORM: FIX
.
.
FLM0415 USED PARAMETER: IBLKSIZE: 133
FLM0415 USED PARAMETER: IPRCNTRL: ASA

14 FLM0468 SPLIT RECORDS/BYTES: 2,048 / 1,048,576
15 FLM0410 DATA SET NAME : USER.CMPLIST.ADC02 -F775020 -

.

.
FLM0468 SPLIT RECORDS/BYTES: 2,048 / 1,048,576

15 FLM0410 DATA SET NAME : USER.CMPLIST.ADC05 -F775020 -
FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

.

.
FLM0407 OUTPUT RECORDS/BYTES: 10 / 5,120

16 FLM0468 SPLIT RECORDS/BYTES: 451 / 230,912
17 FLM0410 DATA SET NAME : USER.CMPLIST.ADC01 -FLAMFILE-
18 FLM0435 FLAMFILE MAC: 50E22D8B48E0726B
19 FLM0406 INPUT RECORDS/BYTES: 324,192 / 43,117,536

FLM0407 OUTPUT RECORDS/BYTES: 8,633 / 4,420,096
20 FLM0416 COMPRESSION REDUCTION IN PERCENT: 89.75
21 FLM0408 CPU - TIME: 16.6414

FLM0409 RUN - TIME: 60.0083
22 FLM0440 FLAM COMPRESSION NORMAL END

(1) The copyright message contains the licence number.
Here:Test licence with expiration date at 182nd day in 2003.

(2) Recording the name of the parameter file. It is a JES generated file.

(3) Recording all parameter of this parameter file.

(4) The combination ‚SHOW=NONE ... SHOW=ALL’ suppresses the recording of

the encryption key.

(5) The current FLAM version is recorded.

(6) The first input file is recorded with its file attributes.

(7) The split mode has been activated.

(8) The cryptographic algorithm is used.

(9) Recording of the first FLAMFILE .

(10) And the corresponding file attributes.

(11) The member of the Group FLAMFILE is secured with the recorded Message
Authorization Code (MAC). It is a unique value.

(12) The first input file is closed. Record- and byte counter are recorded as well as

record- and byte counter of the compressed data.

(13) The second file is opened, recording its data.

(14) The first fragment of the FLAMFILE reached its limit. Recording the record- and

byte counter for this file.

(15) The file name of the 2nd FLAMFILE fragment is shown and the corresponding
(generated) DD-name.

(16) The last fragment has less records and bytes.

(17) Repeating the first FLAMFILE

(18) The entire Group FLAMFILE is secured with the recorded Message
Authorization Code (MAC). It is a unique value for this FLAMFILE.

(19) The whole number of records and bytes for both input and output are recorded

(always true data without record length fields).

10 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

(20) The compression ratio is recorded in percent.

(21) The CPU time used and the elapsed time are displayed.

(22) Compression was terminated without error.

To decompress all data with internal allocation by FLAM and change all output
names from LIST to DEC only following information are necessary:

//DECO EXEC PGM=FLAM
//STEPLIB DD DSN=USER.FLAM.LOAD,DISP=SHR
//FLPRINT DD SYSOUT=*
//FLAMPAR DD *
 DECOMPRESS Start Decompression
 FLAMOUT=<*.LIST=*.DEC> All files have DEC as last qualifier
 FLAMFILE=USER.CMPLIST.ADC01 Name of first FLAMFILE
 SHOW=NO Protocol inactivated
 CRYPTOKEY=C’THIS IS A KEY FOR ENCRYPTION’
 SHOW=ALL Protocol activated
/*

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.2 How to use the record level interface

5.2.1 Compression

The sequential file INDAT with fixed record length is read
using a COBOL program. Each record is passed to the
record level interface. FLAM generates the compressed
FLAMFILE that will be read in the next example.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE1C.
 AUTHOR. LIMES DATENTECHNIK GMBH.
 *
 * SAMPLE1C READS A SEQUENTIAL DATA SET.
 * EVERY RECORD IS GIVEN TO FLAM FOR COMPRESSION.
 * FLAM MANAGES THE FLAMFILE ITSELF.
 *
 * IN THIS EXAMPLE, THE FLAMFILE CAN BE
 * - ANY DATA SET IN MVS, BS2000
 * - VSAM DOS/VSE
 *
 * A SEQUENTIAL FILE IS READ.
 * EACH RECORD IS PASSED TO FLAM FOR
 * COMPRESSION.
 * FLAM HANDLES ITSELF THE COMPRESSED FILE.
 *
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 *
 SPECIAL-NAMES.
 SYSOUT IS OUT-PUT.
 *
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INDAT ASSIGN TO SYS010-S-DATAIN
 ACCESS MODE IS SEQUENTIAL
 ORGANIZATION IS SEQUENTIAL.
 *
 DATA DIVISION.
 *
 FILE SECTION.
 FD INDAT RECORD CONTAINS 80 CHARACTERS
 RECORDING MODE IS F.
 *
 01 INDAT-RECORD.
 02 FILLER PIC X(80).
 *
 WORKING-STORAGE SECTION.
 *
 77 OPERATION PIC X(6).
 *

12 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 01 FLAM-PARAMETER.
 *
 * USED FOR EVERY FLAM CALL
 *
 02 FILE-ID PIC S9(8) COMP SYNC.
 02 RETCO PIC S9(8) COMP SYNC.
 88 FLAMOK VALUE 0.
 *
 02 RETCO-X REDEFINES RETCO.
 03 RETCO-1 PIC X.
 88 NODMS-ERROR VALUE LOW-VALUE.
 03 RETCO-2-4 PIC XXX.
 *
 * USED FOR FLAM OPEN
 *
 02 LASTPAR PIC S9(8) COMP SYNC VALUE 0.
 02 OPENMODE PIC S9(8) COMP SYNC VALUE 1.
 02 DDNAME PIC X(8) VALUE "FLAMFILE".
 02 STATIS PIC S9(8) COMP SYNC VALUE 0.
 *
 * USED FOR FLAM PUT
 *
 02 DATLEN PIC S9(8) COMP SYNC VALUE +80.
 02 DATABYTES PIC X(80).
 /
 PROCEDURE DIVISION.
 MAIN SECTION.
 *
 OPEN-INPUT-DATA.
 *
 * OPEN DATA SET TO READ RECORDS
 *
 OPEN INPUT INDAT.
 *
 OPEN-FLAM.
 *
 * OPEN FLAM FOR OUTPUT (COMPRESSION)
 *
 CALL "FLMOPN" USING FILE-ID, RETCO,
 LASTPAR, OPENMODE, DDNAME, STATIS.
 IF NOT FLAMOK
 THEN MOVE "OPEN" TO OPERATION
 PERFORM FLAM-ERROR
 GO TO CLOSE-DATA.
 READ-RECORD.
 *
 * READ A RECORD FROM INPUT DATA SET
 *
 READ INDAT INTO DATABYTES AT END
 GO TO FINISH-COMPRESSION.
 *
 WRITE-RECORD.
 *
 * WRITE THE RECORD WITH FLAM COMPRESSION
 *
 CALL "FLMPUT" USING FILE-ID, RETCO,
 DATLEN, DATABYTES.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 *
 IF FLAMOK
 THEN GO TO READ-RECORD
 ELSE MOVE "PUT" TO OPERATION
 PERFORM FLAM-ERROR.
 *
 FINISH-COMPRESSION.
 *
 * CLOSE FLAM
 *
 CALL "FLMCLS" USING FILE-ID, RETCO.
 IF NOT FLAMOK
 THEN MOVE "CLOSE" TO OPERATION
 PERFORM FLAM-ERROR.
 CLOSE-DATA.
 CLOSE INDAT.
 MAIN-END.
 STOP RUN.
 *
 FLAM-ERROR SECTION.
 FLAM-ERROR-1.
 IF NODMS-ERROR
 THEN DISPLAY "FLAM-ERROR." UPON OUT-PUT
 ELSE MOVE LOW-VALUE TO RETCO-1
 DISPLAY "DMS-ERROR FOR FLAMFILE." UPON OUT-PUT.
 DISPLAY "OPERATION " OPERATION "RETURNCODE= " RETCO
 UPON OUT-PUT.
 FLAM-ERROR-99.
 EXIT.

14 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5.2.2 Decompression

FLAM reads here the compressed file from the last
example. The decompressed records are passed via the
record level interface to the COBOL program and are
finally written into file OUTDAT.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE1D.
 AUTHOR. LIMES DATENTECHNIK GMBH.
 *
 * SAMPLE1D READS WITH FLAM COMPRESSED RECORDS AND WRITES
 * THE RECEIVED DECOMPRESSED DATA IN A SEQUENTIAL
 * DATA SET.
 *
 * IN THIS EXAMPLE, THE FLAMFILE CAN BE
 * - ANY DATA SET IN MVS, BS2000
 * - VSAM IN DOS/VSE
 *
 * HERE, FLAM IS USED FOR READ ACCESSES TO
 * COMPRESSED DATA.
 * RECORDS RECEIVED ARE WRITTEN TO A
 * SEQUENTIAL FILE.
 *
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 *
 SPECIAL-NAMES.
 SYSOUT IS OUT-PUT.
 *
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT OUTDAT
 ASSIGN TO SYS010-S-DATOUT
 ACCESS MODE IS SEQUENTIAL.
 *
 * DATA DIVISION.
 *
 FILE SECTION.
 FD OUTDAT RECORD CONTAINS 80 CHARACTERS
 RECORDING MODE F.
 01 OUTDAT-RECORD.
 02 FILLER PIC X(80).
 *
 WORKING-STORAGE SECTION.
 *
 77 OPERATION PIC X(6).
 *
 01 FLAM-PARAMETER.
 *
 * USED FOR ALL FLAM CALLS
 *
 02 FILE-ID PIC S9(8) COMP SYNC.
 02 RETCO PIC S9(8) COMP SYNC.
 88 FLAMOK VALUE 0.
 88 FILEID-ERR VALUE -1.
 88 MEMORY-ERR VALUE -1.

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 88 REC-TRUNCATED VALUE 1.
 88 END-OF-FILE VALUE 2.
 88 REC-NOT-FOUND VALUE 5.
 88 NEW-HEADER VALUE 6.
 *
 88 NO-FLAMFILE VALUE 10.
 88 FORMAT-ERR VALUE 11.
 88 RECLEN-ERR VALUE 12.
 88 FILELEN-ERR VALUE 13.
 88 CHECKSUM-ERR VALUE 14.
 88 MAXB-INVALID VALUE 21.
 88 COMPMODE-INVALID VALUE 22.
 88 COMPSYNTAX-ERR VALUE 23.
 88 BLKSIZE-INVALID VALUE 24.
 88 RECSIZE-INVALID VALUE 25.
 88 FLAMCODE-INVALID VALUE 26.
 88 FILE-EMPTY VALUE 30.
 88 NO-DATA-SET VALUE 31.
 *
 02 RETCO-X REDEFINES RETCO.
 03 RETCO-1 PIC X
 88 FLAM-ERROR-RC VALUE LOW-VALUE.
 03 RETCO-2-4 PIC XXX.
 *
 * USED FOR FLAM OPEN
 *
 02 LASTPAR PIC S9(8) COMP SYNC VALUE 0.
 02 OPENMODE PIC S9(8) COMP SYNC VALUE 0.
 02 DDNAME PIC X(8) VALUE "FLAMFILE".
 02 STATIS PIC S9(8) COMP SYNC VALUE 0.
 *
 * USED FOR FLAM GET
 *
 02 DATLEN PIC S9(8).
 02 MAXLEN PIC S9(8) COMP SYNC VALUE +80.
 /
 PROCEDURE DIVISION.
 *
 MAIN SECTION.
 *
 OPEN-OUTPUT-DATA.
 *
 * OPEN DATA SET TO WRITE RECORDS
 *
 OPEN OUTPUT OUTDAT.
 *
 OPEN-FLAM.
 *
 * OPEN FLAM FOR INPUT (DECOMPRESSION)
 *
 CALL "FLMOPN" USING FILE-ID, RETCO,
 LASTPAR, OPENMODE, DDNAME, STATIS.
 IF NOT FLAMOK
 THEN MOVE "OPEN" TO OPERATION
 PERFORM FLAM-ERROR
 GO TO CLOSE-DATA.
 READ-RECORD.

16 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 *
 * READ A RECORD WITH FLAM IN OUTPUT AREA
 *
 CALL "FLMGET" USING FILE-ID, RETCO,
 DATLEN, OUTDAT-RECORD, MAXLEN.
 *
 IF FLAMOK
 THEN NEXT SENTENCE
 ELSE IF END-OF-FILE
 THEN GO TO CLOSE-FLAM
 ELSE MOVE "GET" TO OPERATION
 PERFORM FLAM-ERROR
 GO TO CLOSE-FLAM.
 *
 WRITE-RECORD.
 *
 * WRITE THE DECOMPRESSED RECORD
 *
 WRITE OUTDAT-RECORD.
 *
 GO TO READ-RECORD.
 *
 CLOSE-FLAM.
 *
 * CLOSE TO FLAM
 *
 CALL "FLMCLS" USING FILE-ID, RETCO.
 IF NOT FLAMOK
 THEN MOVE "CLOSE" TO OPERATION
 PERFORM FLAM-ERROR.
 CLOSE-DATA.
 *
 * CLOSE OUTPUT DATA
 *
 CLOSE OUTDAT.
 MAIN-END.
 STOP RUN.
 *
 FLAM-ERROR SECTION.
 FLAM-ERROR-1.
 IF FLAM-ERROR-RC
 THEN DISPLAY "FLAM-ERROR." UPON OUT-PUT
 ELSE MOVE LOW-VALUE TO RETCO-1
 DISPLAY "DMS-ERROR FOR FLAMFILE." UPON OUT-PUT.
 DISPLAY "OPERATION " OPERATION "RETURNCODE= " RETCO
 UPON OUT-PUT.
 FLAM-ERROR-99.
 EXIT.

FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.2.3 Random access to an index sequential
FLAMFILE

This example requires an index sequential FLAMFILE
created from an index sequential original file with 80 bytes
record length and a key of 8 byte length at position 73.
The keys are printable numeric from 1 to n. We assume n
to be greater than 40. The compressed file can be created
using the FLAM utility.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE3D.
 AUTHOR. LIMES DATENTECHNIK GMBH.
 *
 * SAMPLE3D IS AN EXAMPLE FOR AN INFORMATION RETRIEVAL PROGRAM,
 * BASED ON A VSAM-KSDS-FLAMFILE, USING THE FLAM-CALL-INTERFACE
 *
 * A DIRECT READ WITH KEY IS DONE.
 * IF RECORD FOUND, THE NEXT RECORDS ARE READ SEQUENTIAL AND
 * DISPLAYED, UNTIL A NEW SET OF KEYS START.
 *
 ENVIRONMENT DIVISION.
 *
 CONFIGURATION SECTION.
 *
 SPECIAL-NAMES.
 *
 SYSOUT IS OUT-PUT.
 *
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 *
 77 NEXT-KEY PIC 9(8).
 *
 77 CONDITION-FLAG PIC X.
 88 SET-END VALUE "X".
 *
 77 SET-END-FLAG PIC X VALUE "X".
 *
 01 FLAM-FILEID PIC 9(8) COMP.
 *
 01 FLAM-RETCO PIC S9(8) COMP.
 88 FLAMOK VALUE 0.
 88 FILEID-ERR VALUE -1.
 88 MEMORY-ERR VALUE -1.
 88 REC-TRUNCATED VALUE 1.
 88 END-OF-FILE VALUE 2.
 88 REC-NOT-FOUND VALUE 5.
 88 NEW-HEADER VALUE 6.
 *
 88 NO-FLAMFILE VALUE 10.
 88 FORMAT-ERR VALUE 11.
 88 RECLEN-ERR VALUE 12.
 88 FILELEN-ERR VALUE 13.
 88 CHECKSUM-ERR VALUE 14.
 88 MAXB-INVALID VALUE 21.
18 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 88 COMPMODE-INVALID VALUE 22.
 88 COMPSYNTAX-ERR VALUE 23.
 88 BLKSIZE-INVALID VALUE 24.
 88 RECSIZE-INVALID VALUE 25.
 88 FLAMCODE-INVALID VALUE 26.
 88 FILE-EMPTY VALUE 30.
 *
 01 RETCO-X REDEFINES FLAM-RETCO.
 03 RETCO-1 PIC X.
 88 NODMS-ERROR VALUE LOW-VALUE.
 03 RETCO-2 PIC X.
 03 RETCO-3-4.
 05 RETCO-3 PIC X.
 05 RETCO-4 PIC X.
 **
 *
 01 FLMOPN-AREA.
 02 LASTPAR PIC S9(8) COMP SYNC VALUE 0.
 02 OPENMODE PIC S9(8) COMP SYNC VALUE 0.
 02 DDNAME PIC X(8) VALUE "FLAMFILE".
 02 STATIS PIC S9(8) COMP SYNC VALUE 0.
 *
 01 FLMGET-FLMGKY-AREA.
 02 DATALEN PIC S9(8) COMP SYNC.
 02 DATA-AREA.
 04 PURE-DATA PIC X(72).
 04 KEY-DATA PIC 9(8).
 02 BUFFLEN PIC S9(8) COMP SYNC VALUE +80.
 *
 01 SEARCH-KEYS.
 02 S-KEY-1 PIC 9(8) VALUE 10.
 02 S-KEY-2 PIC 9(8) VALUE 30.
 02 S-KEY-3 PIC 9(8) VALUE 0.
 01 STOP-KEYS.
 02 STOP-KEY-1 PIC 9(8) VALUE 20.
 02 STOP-KEY-2 PIC 9(8) VALUE 40.
 02 STOP-KEY-3 PIC 9(8) VALUE 9.
 /
 PROCEDURE DIVISION.
 *
 MAIN SECTION.
 MAIN-OPEN-FILE.
 *
 * OPEN FLAMFILE
 *
 * THE FLAMFILE WAS BUILD BY THE FLAM UTILITY, SO IT HAS
 * A FILE HEADER CONTAINING VALUES ABOUT THE ORIGINAL DATA SET.
 * THEN WE NEED ONLY THE FLMOPN CALL.
 *
 CALL "FLMOPN" USING FLAM-FILEID,
 FLAM-RETCO,
 LASTPAR,
 OPENMODE,
 DDNAME,
 STATIS.
 IF NOT FLAMOK
 THEN DISPLAY "OPEN-ERROR." UPON OUT-PUT

FLAM V4.5 (MVS) 19
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 PERFORM FLAM-ERROR
 GO TO MAIN-END.
 MAIN-SEARCH-1.
 *
 * SEARCH FOR SPECIAL RECORD WITH KEY NO. 1
 *
 MOVE S-KEY-1 TO KEY-DATA.
 PERFORM GET-KEY.
 *
 * IF RECORD FOUND, READ THE NEXT RECORDS
 *
 IF FLAMOK
 THEN MOVE STOP-KEY-1 TO NEXT-KEY
 MOVE SPACE TO CONDITION-FLAG
 PERFORM GET-SEQ UNTIL SET-END.
 MAIN-SEARCH-2.
 *
 * SEARCH FOR SPECIAL RECORD WITH KEY NO. 2
 *
 MOVE S-KEY-2 TO KEY-DATA.
 PERFORM GET-KEY.
 *
 * IF RECORD FOUND, READ THE NEXT RECORDS
 *
 IF FLAMOK
 THEN MOVE STOP-KEY-2 TO NEXT-KEY
 MOVE SPACE TO CONDITION-FLAG
 PERFORM GET-SEQ UNTIL SET-END.
 MAIN-SEARCH-3.
 *
 * SEARCH FOR SPECIAL RECORD WITH KEY NO. 3
 * (KEY DOES NOT EXIST IN DATA SET).
 *
 MOVE S-KEY-3 TO KEY-DATA.
 PERFORM GET-KEY.
 *
 * IF RECORD NOT FOUND, FLAM POSITIONS TO THE NEXT HIGHER KEY
 * IN THE DATA SET:
 *
 IF REC-NOT-FOUND
 THEN MOVE STOP-KEY-3 TO NEXT-KEY
 MOVE SPACE TO CONDITION-FLAG
 PERFORM GET-SEQ UNTIL SET-END.
 MAIN-CLOSE-FILE.
 *
 * CLOSE FLAMFILE
 * CALL "FLMCLS" USING FLAM-FILEID,
 FLAM-RETCO.
 MAIN-END.
 STOP RUN.
 /
 FLAM-ERROR SECTION.
 *
 * FLAM RETURN CODE IS NOT ZERO.
 * DOCUMENT THE ERROR-SITUATION.
 *
 FLAM-ERROR-1.

20 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 IF END-OF-FILE
 THEN GO TO FLAM-ERROR-99.
 IF NODMS-ERROR
 THEN DISPLAY "FLAM-ERROR." UPON OUT-PUT
 ELSE MOVE LOW-VALUE TO RETCO-1
 * THIS BYTE CONTAINS A SIGN FOR DATA SET-ERROR,
 * WE DON"T NEED TO DISPLAY IT
 DISPLAY "DMS-ERROR FOR FLAMFILE." UPON OUT-PUT.
 FLAM-ERROR-2.
 DISPLAY "RETURNCODE= " FLAM-RETCO UPON OUT-PUT.
 FLAM-ERROR-99.
 EXIT.
 /
 GET-KEY SECTION.
 *
 * GET A RECORD WITH SPECIFIED KEY
 *
 GET-KEY-1.
 CALL "FLMGKY" USING FLAM-FILEID,
 FLAM-RETCO,
 DATALEN,
 DATA-AREA,
 BUFFLEN.
 GET-KEY-2.
 IF FLAMOK
 THEN NEXT SENTENCE
 ELSE IF REC-NOT-FOUND
 THEN DISPLAY "KEY NOT FOUND: " KEY-DATA
 UPON OUT-PUT
 GO TO GET-KEY-99
 ELSE PERFORM FLAM-ERROR
 GO TO GET-KEY-99.
 GET-KEY-3.
 DISPLAY "KEY FOUND: " KEY-DATA UPON OUT-PUT.
 DISPLAY "DATA: " UPON OUT-PUT.
 DISPLAY DATA-AREA UPON OUT-PUT.
 GET-KEY-99.
 EXIT.
 /
 GET-SEQ SECTION.
 *
 * GET RECORDS IN SEQUENTIAL ORDER
 *
 GET-SEQ-1.
 CALL "FLMGET" USING FLAM-FILEID,
 FLAM-RETCO,
 DATALEN,
 DATA-AREA,
 BUFFLEN.
 GET-SEQ-2.
 *
 * CHECK RETURNCODE
 *
 IF FLAMOK
 THEN
 *
 * IF RECORD CONTAINS TO THE SET, DISPLAY THE DATA,

FLAM V4.5 (MVS) 21
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 * ELSE SET THE SET-END CONDITION.
 *
 IF KEY-DATA NEXT-KEY
 THEN DISPLAY DATA-AREA UPON OUT-PUT
 ELSE MOVE SET-END-FLAG TO CONDITION-FLAG
 ELSE
 *
 * SET THE SET-END CONDITION,
 * ON ERROR, DISPLAY THE FLAM RETURN CODE.
 *
 MOVE SET-END-FLAG TO CONDITION-FLAG
 IF NOT END-OF-FILE
 THEN PERFORM FLAM-ERROR.
 GET-SEQ-99.
 EXIT.

22 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5.2.4 Example for the entire record level
interface FLAMREC

In this program, you are able to call all functions of the
record interface FLAMREC with all parameters and in any
sequence. This example thus contains all the file
definitions and all the subprogram calls that can be used
for the record level interface. It can be used as an
example not only for development, but also for examining
any compressed file.

You’ll find the code in the example library FLAM.SRCLIB.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. RECTEST.

 * NAME: RECTEST VERSION: 4.4A DATUM: 23.05.2012 *
 * FUNKTION: FLAMREC-SCHNITTSTELLE TESTEN. *
 * MIT DIESEM TESTPROGRAMM KOENNEN ALLE FUNKTIONEN *
 * DER FLAM SATZSCHNITTSTELLE FLAMREC MIT ALLEN PARA- *
 * METERWERTEN IN BELIEBIGER REIHENFOLGE AUFGERUFEN *
 * WERDEN. *
 * *
 * FUNCTION: TEST ALL FLAMREC-ENTRIES. *
 * YOU CAN TEST ALL FUNCTIONS OF THE FLAMREC INTERFACE*
 * WITH ALL PARAMETERS AND IN ALL SEQUENCE. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 *
 SYSIN IS TERMIN
 SYSOUT IS TERMOUT.
 *
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 *
 * PARAMETER FUER FLMOPN
 *
 77 FLAMID PIC S9(8) COMP SYNC.
 01 RETCO PIC S9(8) COMP SYNC.
 88 OK VALUE 0.
 88 UNZULAESSIG VALUE -1.
 01 RETCO-RED REDEFINES RETCO.
 05 RETCO-INDICATOR PIC X(1).
 88 DVS-ERROR VALUE HIGH-VALUE.
 05 SECURE-INDICATOR PIC X(1).
 88 FLAM-ERROR VALUE LOW-VALUE.
 05 RETCO-FLAM PIC S9(4) COMP SYNC.
 88 CUT VALUE 1.
 88 EOF VALUE 2.
 88 GAP VALUE 3.
 88 INVKEY VALUE 5.
 77 LASTPAR PIC S9(8) COMP SYNC
 VALUE 1.
 88 LAST-PARAMETER VALUE 0.
 77 OPENMODE PIC S9(8) COMP SYNC

FLAM V4.5 (MVS) 23
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 VALUE 2.
 88 OPEN-INPUT VALUE 0.
 88 OPEN-OUTPUT VALUE 1.
 88 OPEN-INOUT VALUE 2.
 88 OPEN-OUTIN VALUE 3.
 77 DDNAME PIC X(8)
 VALUE "FLAMFILE".
 77 STATIS PIC S9(8) COMP SYNC
 VALUE 1.
 88 STATISTIK VALUE 1.
 *
 * PARAMETER FUER FLMOPD
 *
 77 NAMELEN PIC S9(8) COMP SYNC
 VALUE 54.
 77 FILENAME PIC X(54)
 VALUE SPACES.
 77 DSORG PIC S9(8) COMP SYNC
 VALUE 1.
 77 RECFORM PIC S9(8) COMP SYNC.
 77 MAXSIZE PIC S9(8) COMP SYNC
 VALUE 512.
 77 RECDELIM PIC X(4).
 77 BLKSIZE PIC S9(8) COMP SYNC.
 77 CLOSDISP PIC S9(8) COMP SYNC
 VALUE 0.
 77 DEVICE PIC S9(8) COMP SYNC
 VALUE 0.
 *
 * PARAMETER FUER FLMOPF / FLMOPY
 *
 77 VERSION PIC S9(8) COMP SYNC.
 88 VERSION-1 VALUE 100.
 88 VERSION-1-1 VALUE 101.
 88 VERSION-2 VALUE 200.
 77 FLAMCODE PIC S9(8) COMP SYNC.
 88 EBC-DIC VALUE 0.
 88 ASCII VALUE 1.
 77 COMPMODE PIC S9(8) COMP SYNC.
 88 CX8 VALUE 0.
 88 CX7 VALUE 1.
 88 VR8 VALUE 2.
 77 MAXBUFF PIC S9(8) COMP SYNC.
 77 HEADER PIC S9(8) COMP SYNC
 VALUE 1.
 88 NOHEADER VALUE 0.
 88 FILEHEADER VALUE 1.
 77 MAXREC PIC S9(8) COMP SYNC
 VALUE 255.
 *
 * SCHLUESSELBESCHREIBUNG DER FLAMFILE
 *
 01 KEYDESC.
 05 KEYFLAGS PIC S9(8) COMP SYNC
 VALUE 1.
 05 KEYPARTS PIC S9(8) COMP SYNC
 VALUE 1.

24 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 05 KEYENTRY1.
 10 KEYPOS1 PIC S9(8) COMP SYNC
 VALUE 1.
 10 KEYLEN1 PIC S9(8) COMP SYNC
 VALUE 9.
 10 KEYTYPE1 PIC S9(8) COMP SYNC
 VALUE 1.
 05 KEYENTRY-2-BIS-8 OCCURS 7 TIMES.
 10 KEYPOS PIC S9(8) COMP SYNC.
 10 KEYLEN PIC S9(8) COMP SYNC.
 10 KEYTYPE PIC S9(8) COMP SYNC.
 *
 77 BLKMODE PIC S9(8) COMP SYNC.
 88 UNBLOCKED VALUE 0.
 88 BLOCKED VALUE 1.
 77 EXK20 PIC X(8)
 VALUE SPACES.
 77 EXD20 PIC X(8)
 VALUE SPACES.
 77 SECINFO PIC S9(8) COMP SYNC
 VALUE 0.
 77 CRYPTO PIC S9(8) COMP SYNC
 VALUE 0.
 *
 * PARAMETER FUER FLMPHD
 *
 77 NAMELEN-ORIG PIC S9(8) COMP SYNC
 VALUE 54.
 77 FILENAME-ORIG PIC X(54)
 VALUE SPACES.
 77 DSORG-ORIG PIC S9(8) COMP SYNC
 VALUE 1.
 77 RECFORM-ORIG PIC S9(8) COMP SYNC.
 77 RECSIZE-ORIG PIC S9(8) COMP SYNC
 VALUE 512.
 77 RECDELIM-ORIG PIC X(4).
 77 BLKSIZE-ORIG PIC S9(8) COMP SYNC.
 77 PRCTRL-ORIG PIC S9(8) COMP SYNC
 VALUE 0.
 88 NO-CONTROL-CHAR VALUE 0.
 88 ASA-CONTROL-CHAR VALUE 1.
 88 MACH-CONTROL-CHAR VALUE 2.
 77 SYSTEM-ORIG PIC X(2)
 VALUE LOW-VALUES.
 77 LASTPAR-PHD PIC S9(8) COMP SYNC
 VALUE 1.
 88 LAST-PARAMETER-PHD VALUE 0.
 *
 * SCHLUESSELBESCHREIBUNG DER ORIGINALDATEI
 *
 01 KEYDESC-ORIG.
 05 KEYFLAGS-ORIG PIC S9(8) COMP SYNC
 VALUE 1.
 05 KEYPARTS-ORIG PIC S9(8) COMP SYNC
 VALUE 1.
 05 KEYENTRY1-ORIG.
 10 KEYPOS1-ORIG PIC S9(8) COMP SYNC

FLAM V4.5 (MVS) 25
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 VALUE 1.
 10 KEYLEN1-ORIG PIC S9(8) COMP SYNC
 VALUE 8.
 10 KEYTYPE1-ORIG PIC S9(8) COMP SYNC
 VALUE 1.
 05 KEYENTRY-2-BIS-8-ORIG OCCURS 7 TIMES
 INDEXED BY KEYDESC-INDEX.
 10 KEYPOS-ORIG PIC S9(8) COMP SYNC.
 10 KEYLEN-ORIG PIC S9(8) COMP SYNC.
 10 KEYTYPE-ORIG PIC S9(8) COMP SYNC.
 *
 77 KEYDESC-INDIKATOR PIC X(1)
 VALUE "Y".
 88 KEYDESC-DEFINIERT VALUE "Y".
 *
 * PARAMETER FUER FLMPUH
 *
 77 UATTRLEN PIC S9(8) COMP SYNC.
 77 USERATTR PIC X(80).
 *
 * PARAMETER FLMGET / FLMPUT
 *
 77 RECLEN PIC S9(8) COMP SYNC
 VALUE 80.
 01 REC-ORD.
 05 BYTE PIC X(1)
 OCCURS 32767 TIMES
 INDEXED BY REC-INDEX.
 01 RECORD-DISPLAY REDEFINES REC-ORD
 PIC X(80).
 01 RECORD-KEY-DISPLAY.
 02 RECORD-KEY-BYTE PIC X(1) OCCURS 80
 INDEXED BY KEY-INDEX.
 77 BUFLEN PIC S9(8) COMP SYNC
 VALUE 32767.
 *
 * PARAMETER FLMPWD
 *
 77 PWDLEN PIC S9(8) COMP SYNC
 VALUE 0.
 77 CRYPTOKEY PIC X(64).
 *
 * PARAMETER FLMFKY / FLMGRN / FLMFRN
 *
 77 KEY-LEN PIC S9(8) COMP SYNC
 VALUE 8.
 77 CHECKMODE PIC S9(8) COMP SYNC
 VALUE 0.
 77 RECNO PIC S9(8) COMP SYNC.
 *
 * PARAMETER FLMSET
 *
 01 FLMSET-RC.
 05 FLMSET-RC-RETCO PIC S9(8) COMP.
 88 ERR-RC-TIME VALUE 90.
 88 ERR-RC-PARAM VALUE 91.
 88 ERR-RC-VALUE VALUE 92.

26 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 05 FLMSET-RC-INFO PIC 9(8) COMP.
 77 FLMSET-PARAM PIC 9(8) COMP.
 * SET BEFORE FLMOPD
 88 SETPRM-SPLITMODE VALUE 1.
 88 SETPRM-SPLITNUM VALUE 2.
 88 SETPRM-SPLITSIZE VALUE 3.
 88 SETPRM-PRIMSPACE VALUE 4.
 88 SETPRM-SECSPACE VALUE 5.
 88 SETPRM-VOLUME VALUE 6.
 88 SETPRM-UNIT VALUE 7.
 88 SETPRM-DCLASS VALUE 8.
 88 SETPRM-SCLASS VALUE 9.
 88 SETPRM-MCLASS VALUE 10.
 88 SETPRM-DISPS VALUE 11.
 88 SETPRM-DISPN VALUE 12.
 88 SETPRM-DISPS VALUE 13.
 * SET BEFORE FLMOPF
 88 SETPRM-CRYPTOMODE VALUE 2001.
 88 SETPRM-SECUREINFO VALUE 2002.
 *
 01 FLMSET-VALUE.
 05 FLMSET-VALUE-CHAR PIC X(8).
 05 FLMSET-VALUE-NUM REDEFINES FLMSET-VALUE-CHAR.
 07 FLMSET-VALUE-BIN PIC 9(8) COMP.
 *
 88 SETVAL-SPLITSER VALUE 1.
 88 SETVAL-SPLITPAR VALUE 2.
 88 SETVAL-CRY-FLAM VALUE 1.
 88 SETVAL-CRY-AES VALUE 2.
 88 SETVAL-DISP-NEW VALUE 1.
 88 SETVAL-DISP-OLD VALUE 2.
 88 SETVAL-DISP-SHR VALUE 3.
 88 SETVAL-DISP-MOD VALUE 4.
 88 SETVAL-DISP-DEL VALUE 1.
 88 SETVAL-DISP-KEEP VALUE 2.
 88 SETVAL-DISP-CATLG VALUE 3.
 88 SETVAL-DISP-UNCAT VALUE 4.
 *
 07 FILLER PIC X(4).
 *
 * VARIABLES FOR DISPLAYING THE RETURNCODE
 *
 77 LEN-RETCO PIC S9(8) COMP SYNC
 VALUE 4.
 01 RETCO-HEX.
 05 FILLER PIC X(4).
 05 RETCO-DISP PIC X(4).
 *
 * VARIABLES FOR INPUT AND DISPLAY OF NUMBERS
 *
 01 EINGABE.
 05 BYTE-EIN PIC X(1)
 OCCURS 9 TIMES
 INDEXED BY EIN-INDEX.
 01 EINGABE-NUM PIC S9(8).
 01 EINGABE-RED REDEFINES EINGABE-NUM.
 05 BYTE-RED PIC X(1)

FLAM V4.5 (MVS) 27
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 OCCURS 8 TIMES
 INDEXED BY RED-INDEX.
 *
 * SELECTED FUNCTION
 *
 01 FUNKTION PIC X(8).
 88 FLMOPN VALUES "FLMOPN" "OPN".
 88 FLMOPD VALUES "FLMOPD" "OPD".
 88 FLMOPF VALUES "FLMOPF" "OPF".
 88 FLMCLS VALUES "FLMCLS" "CLS".
 88 FLMFLU VALUES "FLMFLU" "FLU".
 88 FLMEME VALUES "FLMEME" "EME".
 88 FLMGET VALUES "FLMGET" "GET".
 88 FLMGTR VALUES "FLMGTR" "GTR".
 88 FLMGKY VALUES "FLMGKY" "GKY".
 88 FLMFKY VALUES "FLMFKY" "FKY".
 88 FLMGRN VALUES "FLMGRN" "GRN".
 88 FLMFRN VALUES "FLMFRN" "FRN".
 88 FLMPUT VALUES "FLMPUT" "PUT".
 88 FLMPKY VALUES "FLMPKY" "PKY".
 88 FLMIKY VALUES "FLMIKY" "IKY".
 88 FLMPOS VALUES "FLMPOS" "POS".
 88 FLMDEL VALUES "FLMDEL" "DEL".
 88 FLMUPD VALUES "FLMUPD" "UPD".
 88 FLMPHD VALUES "FLMPHD" "PHD".
 88 FLMPUH VALUES "FLMPUH" "PUH".
 88 FLMGHD VALUES "FLMGHD" "GHD".
 88 FLMGUH VALUES "FLMGUH" "GUH".
 88 FLMPWD VALUES "FLMPWD" "PWD".
 88 FLMSET VALUES "FLMSET" "SET".
 88 FLMQRY VALUES "FLMQRY" "QRY".
 *
 * AREAS FOR FLMCLS AND FLMFLU
 *
 77 CPUTIME PIC 9(8) COMP.
 77 REC-ORDS PIC 9(8) COMP.
 01 BYTEFELD.
 05 BYTEOFL PIC 9(8) COMP SYNC.
 05 BYTES PIC 9(8) COMP SYNC.
 01 BYTECNT REDEFINES BYTEFELD PIC S9(18) COMP SYNC.
 77 CMPRECS PIC 9(8) COMP.
 01 CMPBYFELD.
 05 CMPBYOFL PIC 9(8) COMP SYNC.
 05 CMPBYTES PIC 9(8) COMP SYNC.
 01 CMPBYCNT REDEFINES CMPBYFELD
 PIC S9(18) COMP SYNC.
 *
 * ZUSAETZLICHE BEREICHE FUER FLMCLF UND FLMEME
 *
 01 SIGNATUR.
 05 SIGNAT1 PIC X(4).
 05 SIGNAT2 PIC X(4).
 *
 01 SIGNATUR-DIS.
 05 SIGNAT1-DIS PIC X(8).
 05 SIGNAT2-DIS PIC X(8).
 *

28 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 77 STATIS-DIS PIC ZZZ,ZZZ,ZZZ,ZZZ,ZZZ,ZZ9.
 *
 * ARBEITSVARIABLEN
 *
 77 INDEX-DISPLAY PIC 9(8).
 77 KEY-IND-DISP PIC S9(8) COMP.
 77 GET-COUNT PIC 9(8).
 77 GET-INDEX PIC S9(8) COMP SYNC.
 77 REL-POSITION PIC S9(8) COMP SYNC.
 88 DATEI-ENDE VALUE 99999999.
 88 DATEI-ANFANG VALUE -99999999.
 77 DIGIT PIC 9.
 01 HEXDATA PIC 9(16) COMP SYNC.
 01 HEXDATA-BYTES REDEFINES HEXDATA.
 05 FILLER PIC X(4).
 02 HEXDATA-WORT.
 05 BYTE-1-2-HEX PIC X(2).
 05 BYTE-3-4-HEX PIC X(2).
 77 HEX-QUOTIENT PIC 9(16) COMP SYNC.
 77 HEX-REMAINDER PIC 9(16) COMP SYNC.
 01 HEXDIGITS PIC X(16)
 VALUE "0123456789ABCDEF".
 01 HEXTAB REDEFINES HEXDIGITS.
 05 DIGIT-HEX PIC X(1)
 OCCURS 16 TIMES
 INDEXED BY HEX-INDEX.
 01 CHARDATA PIC X(8).
 01 CHARDATA-BYTES REDEFINES CHARDATA.
 05 BYTE-1-CHAR PIC X(2).
 05 BYTE-2-4-CHAR.
 10 BYTE-2-CHAR PIC X(2).
 10 BYTE-3-4-CHAR PIC X(4).
 01 CHARDATA-TAB REDEFINES CHARDATA.
 05 BYTE-CHAR PIC X(1)
 OCCURS 8 TIMES
 INDEXED BY CHAR-INDEX.
 *
 PROCEDURE DIVISION.
 *
 * DISPLAY START MESSAGE
 *
 START-MELDUNG.
 *
 DISPLAY " " UPON TERMOUT.
 DISPLAY "RECTEST STARTED " UPON TERMOUT.
 DISPLAY " " UPON TERMOUT.
 *
 * OPEN FILE
 *
 OPEN-EINGABE.
 *
 DISPLAY "ENTER PARAMETER FOR FLMOPN:" UPON TERMOUT
 DISPLAY " " UPON TERMOUT
 DISPLAY "OPENMODE (0=INPUT 1=OUTPUT 2=INOUT 3=OUTIN) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO OPENMODE

FLAM V4.5 (MVS) 29
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 DISPLAY "DDNAME ?" UPON TERMOUT
 ACCEPT DDNAME FROM TERMIN
 DISPLAY "STATISTICS (0=NO 1=YES) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO STATIS
 DISPLAY "LASTPAR (0=YES 1=NO) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO LASTPAR
 *
 CALL "FLMOPN" USING FLAMID, RETCO,
 LASTPAR, OPENMODE,
 DDNAME, STATIS
 IF NOT OK
 THEN
 DISPLAY "ERROR DURING OPEN OF: ", DDNAME
 UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 DISPLAY " " UPON TERMOUT
 DISPLAY "PROGRAM ABNORMAL END" UPON TERMOUT
 STOP RUN
 END-IF.
 *
 OPEN-NEXT.
 *
 IF NOT LAST-PARAMETER
 THEN
 DISPLAY "PLEASE SELECT FUNCTION: FLMSET FLMOPD FLMOPF"
 UPON TERMOUT
 ACCEPT FUNKTION FROM TERMIN
 IF FLMSET
 THEN
 PERFORM SETPARM-OPD
 GO TO OPEN-NEXT
 END-IF
 IF FLMOPD
 THEN
 DISPLAY " " UPON TERMOUT
 DISPLAY "ENTER PARAMETER FOR FLMOPD:"
 UPON TERMOUT
 DISPLAY "FILENAME ?" UPON TERMOUT
 ACCEPT FILENAME FROM TERMIN
 DISPLAY "NAMELEN (0 - 54) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO NAMELEN
 IF OPEN-OUTPUT OR OPEN-OUTIN
 THEN
 DISPLAY "DSORG (0=SEQ 1=INDEX ...) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO DSORG
 DISPLAY "RECFORM (0=VAR 1=FIX ...) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO RECFORM
 DISPLAY "MAXSIZE (80 - 32768) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE

30 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 MOVE EINGABE-NUM TO MAXSIZE
 DISPLAY "KEYDESC FUER ORIGINALDATEI ?"
 UPON TERMOUT
 PERFORM KEYDESC-EINGABE
 MOVE KEYDESC-ORIG TO KEYDESC
 DISPLAY "BLKSIZE (0 - 32768) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO BLKSIZE
 ELSE
 IF OPEN-INOUT
 THEN
 DISPLAY "KEYDESC FUER ORIGINALDATEI ?"
 UPON TERMOUT
 PERFORM KEYDESC-EINGABE
 MOVE KEYDESC-ORIG TO KEYDESC
 END-IF
 END-IF
 DISPLAY "CLOSDISP (0=REWIND 1=UNLOAD ...) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO CLOSDISP
 DISPLAY "DEVICE (0=DISK 1=TAPE ...) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO DEVICE
 DISPLAY "LASTPAR (0=YES 1=NO) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO LASTPAR
 CALL "FLMOPD" USING FLAMID, RETCO,
 LASTPAR, NAMELEN, FILENAME,
 DSORG, RECFORM, MAXSIZE,
 RECDELIM, KEYDESC, BLKSIZE,
 CLOSDISP, DEVICE
 IF NOT OK
 THEN
 DISPLAY "ERROR DURING OPEN OF: ",
 FILENAME UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 DISPLAY " " UPON TERMOUT
 DISPLAY "PROGRAM ABNORMAL END"
 UPON TERMOUT
 STOP RUN
 ELSE
 DISPLAY "NAMELEN ", NAMELEN UPON TERMOUT
 DISPLAY "FILENAME ", FILENAME UPON TERMOUT
 DISPLAY "DSORG ", DSORG UPON TERMOUT
 DISPLAY "RECFORM ", RECFORM UPON TERMOUT
 DISPLAY "MAXSIZE ", MAXSIZE UPON TERMOUT
 IF DSORG > 0 AND KEYPARTS > 0
 THEN
 DISPLAY "KEYDESC DER FLAMFILE"
 UPON TERMOUT
 DISPLAY "KEYFLAGS ", KEYFLAGS
 UPON TERMOUT
 DISPLAY "KEYPARTS ", KEYPARTS
 UPON TERMOUT

FLAM V4.5 (MVS) 31
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 DISPLAY "KEYPOS1 ", KEYPOS1
 UPON TERMOUT
 DISPLAY "KEYLEN1 ", KEYLEN1
 UPON TERMOUT
 DISPLAY "KEYTYPE1 ", KEYTYPE1
 UPON TERMOUT
 END-IF
 DISPLAY "BLKSIZE ", BLKSIZE UPON TERMOUT
 DISPLAY "CLOSDISP ", CLOSDISP UPON TERMOUT
 DISPLAY "DEVICE ", DEVICE UPON TERMOUT
 END-IF
 ELSE
 IF FLMOPF
 THEN
 MOVE 1 TO LASTPAR
 MOVE DDNAME TO FILENAME
 ELSE
 DISPLAY FUNKTION, " UNKNOWN" UPON TERMOUT
 GO TO OPEN-NEXT
 END-IF
 END-IF.
 *
 OPEN-NEXT-OPF.
 *
 IF NOT LAST-PARAMETER
 THEN
 DISPLAY "PLEASE SELECT FUNCTION: FLMSET FLMOPF"
 UPON TERMOUT
 ACCEPT FUNKTION FROM TERMIN
 IF FLMSET
 THEN
 PERFORM SETPARM-OPF
 GO TO OPEN-NEXT-OPF
 END-IF
 IF FLMOPF
 THEN
 DISPLAY " " UPON TERMOUT
 DISPLAY "ENTER PARAMETER FOR FLMOPF:"
 UPON TERMOUT
 IF OPEN-OUTPUT OR OPEN-OUTIN
 THEN
 DISPLAY "FLAMCODE (0=EBCDIC 1=ASCII) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLAMCODE
 DISPLAY "COMPMODE (0=CX8 1=CX7 2=VR8 3=ADC)?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO COMPMODE
 DISPLAY "MAXBUFF (0 - 2621440) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO MAXBUFF
 DISPLAY "HEADER (0=NO 1=YES) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO HEADER

32 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 DISPLAY "MAXREC (1 - 4095) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO MAXREC
 DISPLAY "KEYDESC FUER ORIGINALDATEI ?"
 UPON TERMOUT
 PERFORM KEYDESC-EINGABE

 DISPLAY "BLKMODE (0=UNBLK 1=BLK) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO BLKMODE
 DISPLAY "EXK20 ?" UPON TERMOUT
 ACCEPT EXK20 FROM TERMIN
 IF OPEN-OUTIN
 THEN
 DISPLAY "EXD20 ?" UPON TERMOUT
 ACCEPT EXD20 FROM TERMIN
 END-IF
 ELSE
 DISPLAY "HEADER (0=NO 1=YES) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO HEADER
 IF OPEN-INOUT
 THEN
 DISPLAY "MAXREC (1 - 4095) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO MAXREC
 DISPLAY "EXK20 ?" UPON TERMOUT
 ACCEPT EXK20 FROM TERMIN
 END-IF
 DISPLAY "KEYDESC FUER ORIGINALDATEI ?"
 UPON TERMOUT
 PERFORM KEYDESC-EINGABE
 DISPLAY "EXD20 ?" UPON TERMOUT
 ACCEPT EXD20 FROM TERMIN
 END-IF
 CALL "FLMOPF" USING FLAMID, RETCO,
 VERSION, FLAMCODE, COMPMODE,
 MAXBUFF, HEADER, MAXREC,
 KEYDESC-ORIG, BLKMODE,
 EXK20, EXD20
 *
 IF NOT OK
 THEN
 DISPLAY "ERROR OPENING FILE: ",
 FILENAME UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 DISPLAY " " UPON TERMOUT
 DISPLAY "PROGRAM ABNORMAL END" UPON TERMOUT
 STOP RUN
 ELSE
 DISPLAY "VERSION ", VERSION UPON TERMOUT
 DISPLAY "FLAMCODE ", FLAMCODE UPON TERMOUT
 DISPLAY "COMPMODE ", COMPMODE UPON TERMOUT

FLAM V4.5 (MVS) 33
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 DISPLAY "MAXBUFF ", MAXBUFF UPON TERMOUT
 DISPLAY "HEADER ", HEADER UPON TERMOUT
 DISPLAY "MAXREC ", MAXREC UPON TERMOUT
 PERFORM KEYDESC-AUSGABE
 DISPLAY "BLKMODE ", BLKMODE UPON TERMOUT
 DISPLAY "EXK20 ", EXK20 UPON TERMOUT
 DISPLAY "EXD20 ", EXD20 UPON TERMOUT
 END-IF
 END-IF
 END-IF.
 *

 * VERARBEITUNGSSCHLEIFE *

 *
 PERFORM UNTIL FLMCLS
 DISPLAY "PLEASE SELECT FUNCTION: "
 "GET GTR GKY FKY GRN FRN QRY PUT PKY IKY POS DEL"
 " UPD GHD GUH PHD PUH PWD FLU EME CLS"
 UPON TERMOUT
 ACCEPT FUNKTION FROM TERMIN
 IF FLMGET
 THEN PERFORM SEQUENTIELL-LESEN
 ELSE
 IF FLMGTR
 THEN PERFORM SEQUENTIELL-LESEN-RUECKWAERTS
 ELSE
 IF FLMPOS
 THEN PERFORM POSITIONIEREN
 ELSE
 IF FLMDEL
 THEN PERFORM LOESCHEN
 ELSE
 IF FLMGKY
 THEN PERFORM SCHLUESSEL-LESEN
 ELSE
 IF FLMFKY
 THEN PERFORM SCHLUESSEL-POSITIONIEREN
 ELSE
 IF FLMGRN
 THEN PERFORM SATZNUMMER-LESEN
 ELSE
 IF FLMFRN
 THEN PERFORM SATZNUMMER-POSITIONIEREN
 ELSE
 IF FLMPUT
 THEN PERFORM SCHREIBEN
 ELSE
 IF FLMPKY
 THEN PERFORM SCHLUESSEL-SCHREIBEN
 ELSE
 IF FLMUPD
 THEN PERFORM AENDERN
 ELSE
 IF FLMPHD
 THEN PERFORM HEADER-SCHREIBEN
 ELSE

34 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 IF FLMPUH
 THEN PERFORM USER-HEADER-SCHREIBEN
 ELSE
 IF FLMGHD
 THEN PERFORM HEADER-LESEN
 ELSE
 IF FLMGUH
 THEN PERFORM USER-HEADER-LESEN
 ELSE
 IF FLMFLU
 THEN PERFORM MATRIX-ABSCHLIESSEN
 ELSE
 IF FLMIKY
 THEN PERFORM SCHLUESSEL-EINFUEGEN
 ELSE
 IF FLMPWD
 THEN PERFORM PASSWORD-GEBEN
 ELSE
 IF FLMEME
 THEN PERFORM MEMBER-ABSCHLIESSEN
 ELSE
 IF FLMQRY
 THEN PERFORM QUERY-PARMS
 ELSE
 IF FLMCLS
 THEN DISPLAY FILENAME,
 " WILL BE CLOSED"
 UPON TERMOUT
 ELSE DISPLAY FUNKTION,
 " UNBEKANNT"
 UPON TERMOUT
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-PERFORM.
 *
 FLAMFILE-SCHLIESSEN.
 *
 CALL "FLMCLS" USING FLAMID, RETCO CPUTIME REC-ORDS

FLAM V4.5 (MVS) 35
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 BYTES BYTEOFL CMPRECS CMPBYTES
 CMPBYOFL
 IF NOT OK
 DISPLAY "ERROR CLOSING FLAM (FLMCLS)" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 ELSE
 IF STATISTIK
 THEN
 DISPLAY " " UPON TERMOUT
 MOVE CPUTIME TO STATIS-DIS
 DISPLAY "CPU-ZEIT ", STATIS-DIS UPON TERMOUT
 MOVE REC-ORDS TO STATIS-DIS
 DISPLAY "ORIGINAL RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE BYTECNT TO STATIS-DIS
 DISPLAY "ORIGINAL BYTES ", STATIS-DIS UPON TERMOUT
 MOVE CMPRECS TO STATIS-DIS
 DISPLAY "COMPRESSED RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE CMPBYCNT TO STATIS-DIS
 DISPLAY "COMPRESSED BYTES ", STATIS-DIS UPON TERMOUT
 END-IF
 DISPLAY " " UPON TERMOUT
 DISPLAY "PROGRAM NORMAL END" UPON TERMOUT
 END-IF.
 STOP RUN.
 *

 * VERARBEITUNGSFUNKTIONEN *

 *
 SEQUENTIELL-LESEN.
 *
 DISPLAY "NUMBER RECORDS TO READ ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO GET-COUNT.
 MOVE 0 TO RETCO.
 PERFORM VARYING GET-INDEX FROM 0 BY 1
 UNTIL GET-INDEX = GET-COUNT OR NOT OK
 MOVE SPACES TO RECORD-DISPLAY
 CALL "FLMGET" USING FLAMID, RETCO,
 RECLEN, REC-ORD, BUFLEN
 IF GAP
 DISPLAY "*** GAP FOUND ***" UPON TERMOUT
 MOVE 0 TO RETCO
 ELSE
 IF OK OR CUT
 DISPLAY RECORD-DISPLAY UPON TERMOUT
 END-IF
 END-IF
 END-PERFORM.
 IF NOT OK
 DISPLAY "ERROR IN FLMGET" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SEQUENTIELL-LESEN-RUECKWAERTS.
 *
 DISPLAY "NUMBER RECORDS TO READ ?" UPON TERMOUT.

36 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO GET-COUNT.
 MOVE 0 TO RETCO.
 PERFORM VARYING GET-INDEX FROM 0 BY 1
 UNTIL GET-INDEX = GET-COUNT OR NOT OK
 MOVE SPACES TO RECORD-DISPLAY
 CALL "FLMGTR" USING FLAMID, RETCO,
 RECLEN, REC-ORD, BUFLEN
 IF GAP
 DISPLAY "*** GAP FOUND ***" UPON TERMOUT
 MOVE 0 TO RETCO
 ELSE
 IF OK OR CUT
 DISPLAY RECORD-DISPLAY UPON TERMOUT
 END-IF
 END-IF
 END-PERFORM.
 IF NOT OK
 DISPLAY "ERROR IN FLMGTR" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SATZNUMMER-LESEN.
 *
 DISPLAY " " UPON TERMOUT.
 DISPLAY "RECORD NUMBER ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECNO.
 MOVE SPACES TO RECORD-DISPLAY
 CALL "FLMGRN" USING FLAMID, RETCO, RECLEN, REC-ORD
 BUFLEN, RECNO.
 IF GAP
 DISPLAY "*** GAP FOUND ***" UPON TERMOUT
 MOVE 0 TO RETCO
 ELSE
 IF OK OR CUT
 DISPLAY RECORD-DISPLAY UPON TERMOUT
 END-IF
 END-IF
 IF NOT OK
 DISPLAY "FEHLER BEIM POSITIONIEREN AUF SATZNUMMER"
 UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SATZNUMMER-POSITIONIEREN.
 *
 DISPLAY " " UPON TERMOUT.
 DISPLAY "RECORD NUMBER ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECNO.
 DISPLAY "CHECKMODE (0/1/2) ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO CHECKMODE.
 CALL "FLMFRN" USING FLAMID, RETCO, RECNO, CHECKMODE.
 IF NOT OK
 DISPLAY "ERROR IN FLMFRN" UPON TERMOUT

FLAM V4.5 (MVS) 37
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 PERFORM FEHLER-MELDUNG
 ELSE
 DISPLAY "RECORD NUMBER: ", RECNO UPON TERMOUT
 END-IF.
 *
 POSITIONIEREN.
 *
 DISPLAY " " UPON TERMOUT.
 DISPLAY "RELATIVE POSITION ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO REL-POSITION.
 CALL "FLMPOS" USING FLAMID, RETCO, REL-POSITION.
 IF NOT OK
 DISPLAY "ERROR IN FLMPOS" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 LOESCHEN.
 *
 CALL "FLMDEL" USING FLAMID, RETCO,
 IF NOT OK
 DISPLAY "ERROR IN FLMDEL" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SCHLUESSEL-LESEN.
 *
 DISPLAY "RECORD KEY ?" UPON TERMOUT.
 MOVE SPACES TO REC-ORD.
 ACCEPT RECORD-KEY-DISPLAY FROM TERMIN.
 SET KEY-INDEX TO 1.
 SET REC-INDEX TO KEYPOS1-ORIG.
 PERFORM VARYING KEY-IND-DISP FROM 0 BY 1
 UNTIL KEY-IND-DISP = KEYLEN1-ORIG
 MOVE RECORD-KEY-BYTE(KEY-INDEX) TO BYTE(REC-INDEX)
 SET KEY-INDEX UP BY 1
 SET REC-INDEX UP BY 1
 END-PERFORM.
 PERFORM VARYING KEYDESC-INDEX FROM 1 BY 1
 UNTIL KEYDESC-INDEX = KEYPARTS-ORIG
 SET REC-INDEX TO KEYPOS-ORIG(KEYDESC-INDEX)
 PERFORM VARYING KEY-IND-DISP FROM 0 BY 1
 UNTIL KEY-IND-DISP = KEYLEN-ORIG(KEYDESC-INDEX)
 MOVE RECORD-KEY-BYTE(KEY-INDEX) TO BYTE(REC-INDEX)
 SET KEY-INDEX UP BY 1
 SET REC-INDEX UP BY 1
 END-PERFORM
 END-PERFORM.
 CALL "FLMGKY" USING FLAMID, RETCO,
 RECLEN, REC-ORD, BUFLEN.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMGKY" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 MOVE RECORD-KEY-DISPLAY TO RECORD-DISPLAY
 DISPLAY "SEARCHED RECORD: " UPON TERMOUT
 DISPLAY RECORD-DISPLAY UPON TERMOUT

38 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 ELSE
 DISPLAY RECORD-DISPLAY UPON TERMOUT
 END-IF.
 *
 SCHLUESSEL-POSITIONIEREN.
 *
 DISPLAY "KEY LENTGH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO KEY-LEN.
 DISPLAY "RECORD KEY ?" UPON TERMOUT.
 MOVE SPACES TO REC-ORD.
 ACCEPT RECORD-KEY-DISPLAY FROM TERMIN.
 DISPLAY "CHECKMODE (0/1/2) ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO CHECKMODE.
 SET KEY-INDEX TO 1.
 SET REC-INDEX TO KEYPOS1-ORIG.
 PERFORM VARYING KEY-IND-DISP FROM 0 BY 1
 UNTIL KEY-IND-DISP = KEYLEN1-ORIG
 MOVE RECORD-KEY-BYTE(KEY-INDEX) TO BYTE(REC-INDEX)
 SET KEY-INDEX UP BY 1
 SET REC-INDEX UP BY 1
 END-PERFORM.
 PERFORM VARYING KEYDESC-INDEX FROM 1 BY 1
 UNTIL KEYDESC-INDEX = KEYPARTS-ORIG
 SET REC-INDEX TO KEYPOS-ORIG(KEYDESC-INDEX)
 PERFORM VARYING KEY-IND-DISP FROM 0 BY 1
 UNTIL KEY-IND-DISP = KEYLEN-ORIG(KEYDESC-INDEX)
 MOVE RECORD-KEY-BYTE(KEY-INDEX) TO BYTE(REC-INDEX)
 SET KEY-INDEX UP BY 1
 SET REC-INDEX UP BY 1
 END-PERFORM
 END-PERFORM.
 CALL "FLMFKY" USING FLAMID, RETCO,
 KEY-LEN, REC-ORD, CHECKMODE.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMKY" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 MOVE RECORD-KEY-DISPLAY TO RECORD-DISPLAY
 DISPLAY "SEARCHED RECORD: " UPON TERMOUT
 DISPLAY RECORD-DISPLAY UPON TERMOUT
 END-IF.
 *
 SCHREIBEN.
 *
 DISPLAY "DATA LENGTH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECLEN.
 DISPLAY "DATA ?" UPON TERMOUT.
 MOVE SPACES TO RECORD-DISPLAY
 ACCEPT RECORD-DISPLAY FROM TERMIN.
 CALL "FLMPUT" USING FLAMID, RETCO,
 RECLEN, REC-ORD.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMPUT" UPON TERMOUT

FLAM V4.5 (MVS) 39
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SCHLUESSEL-SCHREIBEN.
 *
 DISPLAY "DATA LENGTH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECLEN.
 DISPLAY "DATA WITH KEY ?" UPON TERMOUT.
 MOVE SPACES TO RECORD-DISPLAY
 ACCEPT RECORD-DISPLAY FROM TERMIN.
 CALL "FLMPKY" USING FLAMID, RETCO,
 RECLEN, REC-ORD.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMPKY" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SCHLUESSEL-EINFUEGEN.
 *
 DISPLAY "DATA LENGTH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECLEN.
 DISPLAY "DATA WITH KEY ?" UPON TERMOUT.
 MOVE SPACES TO RECORD-DISPLAY
 ACCEPT RECORD-DISPLAY FROM TERMIN.
 CALL "FLMIKY" USING FLAMID, RETCO,
 RECLEN, REC-ORD.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMIKY" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 AENDERN.
 *
 DISPLAY "DATA LENGTH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO RECLEN.
 DISPLAY "DATA WITH KEY" UPON TERMOUT.
 MOVE SPACES TO RECORD-DISPLAY
 ACCEPT RECORD-DISPLAY FROM TERMIN.
 CALL "FLMUPD" USING FLAMID, RETCO,
 RECLEN, REC-ORD, BUFLEN.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMUPD" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 HEADER-SCHREIBEN.
 *
 DISPLAY "FILENAME ?" UPON TERMOUT
 ACCEPT FILENAME-ORIG FROM TERMIN
 DISPLAY "NAMELEN (0 - 54) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE

40 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 MOVE EINGABE-NUM TO NAMELEN-ORIG
 DISPLAY "DSORG (0=SEQ 1=INDEX 2=REL ...) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO DSORG-ORIG
 DISPLAY "RECFORM (0=VAR 1=FIX 2=UNDEF ...) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO RECFORM-ORIG
 DISPLAY "RECSIZE (0 - 32768) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO RECSIZE-ORIG
 DISPLAY "BLKSIZE (0 - 32768) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO BLKSIZE-ORIG
 IF NOT KEYDESC-DEFINIERT
 THEN
 PERFORM KEYDESC-EINGABE
 MOVE "N" TO KEYDESC-INDIKATOR
 END-IF
 DISPLAY "PRCTRL (0=NO 1=MACHINE 2=ASA) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO PRCTRL-ORIG
 MOVE LOW-VALUES TO SYSTEM-ORIG
 DISPLAY "LASTPAR (0=YES 1=NO) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO LASTPAR-PHD
 *
 CALL "FLMPHD" USING FLAMID, RETCO,
 NAMELEN-ORIG, FILENAME-ORIG,
 DSORG-ORIG, RECFORM-ORIG,
 RECSIZE-ORIG, RECDELIM-ORIG,
 KEYDESC-ORIG, BLKSIZE-ORIG,
 PRCTRL-ORIG, SYSTEM-ORIG,
 LASTPAR-PHD.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMPHD" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 ELSE
 IF NOT LAST-PARAMETER-PHD
 THEN
 DISPLAY " " UPON TERMOUT
 DISPLAY "WRITE USER HEADER" UPON TERMOUT
 PERFORM USER-HEADER-SCHREIBEN
 END-IF
 END-IF.
 *
 USER-HEADER-SCHREIBEN.
 *
 DISPLAY "LENGTH OF USER HEADER ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO UATTRLEN.
 DISPLAY "USER SPECIFIED DATA ?" UPON TERMOUT.
 ACCEPT USERATTR FROM TERMIN.
 CALL "FLMPUH" USING FLAMID, RETCO,
 UATTRLEN, USERATTR.
 IF NOT OK
 THEN

FLAM V4.5 (MVS) 41
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 DISPLAY "ERROR IN FLMPUH"
 UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 HEADER-LESEN.
 *
 MOVE 54 TO NAMELEN-ORIG.
 MOVE SPACES TO FILENAME-ORIG.
 CALL "FLMGHD" USING FLAMID, RETCO,
 NAMELEN-ORIG, FILENAME-ORIG,
 DSORG-ORIG, RECFORM-ORIG,
 RECSIZE-ORIG, RECDELIM-ORIG,
 KEYDESC-ORIG, BLKSIZE-ORIG,
 PRCTRL-ORIG, SYSTEM-ORIG.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMGHD" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 ELSE
 DISPLAY "NAMELEN ", NAMELEN-ORIG UPON TERMOUT
 DISPLAY "FILENAME ", FILENAME-ORIG UPON TERMOUT
 DISPLAY "DSORG ", DSORG-ORIG UPON TERMOUT
 DISPLAY "RECFORM ", RECFORM-ORIG UPON TERMOUT
 DISPLAY "RECSIZE ", RECSIZE-ORIG UPON TERMOUT
 PERFORM KEYDESC-AUSGABE
 DISPLAY "BLKSIZE ", BLKSIZE-ORIG UPON TERMOUT
 DISPLAY "PRCTRL ", PRCTRL-ORIG UPON TERMOUT
 DISPLAY "RECSIZE ", RECSIZE-ORIG UPON TERMOUT
 MOVE SYSTEM-ORIG TO BYTE-3-4-HEX
 PERFORM HEX-TO-CHAR
 DISPLAY "SYSTEM ", BYTE-3-4-CHAR UPON TERMOUT
 END-IF.
 *
 USER-HEADER-LESEN.
 *
 MOVE 80 TO UATTRLEN.
 MOVE SPACES TO USERATTR.
 CALL "FLMGUH" USING FLAMID, RETCO,
 UATTRLEN, USERATTR.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMGUH" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 ELSE
 DISPLAY "UATTRLEN ", UATTRLEN UPON TERMOUT
 IF UATTRLEN > 0
 THEN
 DISPLAY USERATTR UPON TERMOUT
 END-IF
 END-IF.
 *
 MATRIX-ABSCHLIESSEN.
 *
 CALL "FLMFLU" USING FLAMID, RETCO CPUTIME REC-ORDS
 BYTES BYTEOFL CMPRECS CMPBYTES
 CMPBYOFL.

42 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 IF NOT OK
 DISPLAY "ERROR IN FLMFLU" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 ELSE
 IF STATISTIK
 THEN
 DISPLAY " " UPON TERMOUT
 MOVE CPUTIME TO STATIS-DIS
 DISPLAY "CPU-ZEIT ", STATIS-DIS UPON TERMOUT
 MOVE REC-ORDS TO STATIS-DIS
 DISPLAY "ORIGINAL RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE BYTECNT TO STATIS-DIS
 DISPLAY "ORIGINAL BYTES ", STATIS-DIS UPON TERMOUT
 MOVE CMPRECS TO STATIS-DIS
 DISPLAY "COMP. RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE CMPBYCNT TO STATIS-DIS
 DISPLAY "COMP. BYTES ", STATIS-DIS UPON TERMOUT
 END-IF
 END-IF.
 *
 MEMBER-ABSCHLIESSEN.
 *
 CALL "FLMEME" USING FLAMID, RETCO CPUTIME REC-ORDS
 BYTES BYTEOFL CMPRECS CMPBYTES
 CMPBYOFL SIGNATUR.
 IF NOT OK
 DISPLAY "ERROR IN FLMEME" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 DISPLAY " " UPON TERMOUT
 MOVE CPUTIME TO STATIS-DIS
 DISPLAY "CPU-ZEIT ", STATIS-DIS UPON TERMOUT
 MOVE REC-ORDS TO STATIS-DIS
 DISPLAY "ORIGINAL RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE BYTECNT TO STATIS-DIS
 DISPLAY "ORIGINAL BYTES ", STATIS-DIS UPON TERMOUT
 MOVE CMPRECS TO STATIS-DIS
 DISPLAY "COMP. RECORDS ", STATIS-DIS UPON TERMOUT
 MOVE CMPBYCNT TO STATIS-DIS
 DISPLAY "COMP. BYTES ", STATIS-DIS UPON TERMOUT
 MOVE ZERO TO HEXDATA
 MOVE SIGNAT1 TO HEXDATA-WORT
 PERFORM HEX-TO-CHAR
 MOVE CHARDATA TO SIGNAT1-DIS
 MOVE ZERO TO HEXDATA
 MOVE SIGNAT2 TO HEXDATA-WORT
 PERFORM HEX-TO-CHAR
 MOVE CHARDATA TO SIGNAT2-DIS
 DISPLAY "SIGNATURE ", SIGNATUR-DIS UPON TERMOUT.
 *
 PASSWORD-GEBEN.
 *
 DISPLAY "PASSWORD LENGTH ?" UPON TERMOUT.
 PERFORM NUMERISCHE-EINGABE.
 MOVE EINGABE-NUM TO PWDLEN
 DISPLAY "PASSWORD ?" UPON TERMOUT.
 MOVE SPACES TO CRYPTOKEY

FLAM V4.5 (MVS) 43
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 ACCEPT CRYPTOKEY FROM TERMIN.
 CALL "FLMPWD" USING FLAMID, RETCO,
 PWDLEN, CRYPTOKEY.
 IF NOT OK
 THEN
 DISPLAY "ERROR IN FLMPWD" UPON TERMOUT
 PERFORM FEHLER-MELDUNG
 END-IF.
 *
 SETPARM-OPD.
 *
 DISPLAY "ENTER PARAMETER:" UPON TERMOUT
 DISPLAY " 1 = SPLITMODE, 2 = SPLITSIZE, 3 = SPLITNUMBER"
 UPON TERMOUT
 DISPLAY " 4 = PRIM. SPACE, 5 = SECOND. SPACE" UPON TERMOUT
 DISPLAY " 6 = VOLUME, 7 = UNIT" UPON TERMOUT
 DISPLAY " 8 = DATA CLASS, 9 = STORAGE CLASS, 10 = MGT CLASS"
 UPON TERMOUT
 DISPLAY "11 = DISP STATUS, 12 = DISP NORMAL, 13 = DISP ANORM"
 UPON TERMOUT
 DISPLAY "2001 = CRYPTOMODE, 2002 = SECUREINFO"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLMSET-PARAM
 DISPLAY "ENTER VALUE:"
 IF FLMSET-PARAM < 6 OR FLMSET-PARAM > 10
 THEN PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLMSET-VALUE-BIN
 ELSE ACCEPT FLMSET-VALUE-CHAR
 END-IF
 *
 CALL "FLMSET" USING FLAMID, FLMSET-RC, FLMSET-PARAM,
 FLMSET-VALUE
 DISPLAY "RETURNCODE, INFOCODE:" UPON TERMOUT
 DISPLAY FLMSET-RC-RETCO ", " FLMSET-RC-INFO UPON TERMOUT.
 *
 SETPARM-OPF.
 *
 DISPLAY "ENTER PARAMETER:" UPON TERMOUT
 DISPLAY "2001 = CRYPTOMODE, 2002 = SECUREINFO"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLMSET-PARAM
 DISPLAY "ENTER VALUE (0/1/2/3)" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLMSET-VALUE-BIN
 *
 CALL "FLMSET" USING FLAMID, FLMSET-RC, FLMSET-PARAM,
 FLMSET-VALUE
 DISPLAY "RETURNCODE, INFOCODE:" UPON TERMOUT
 DISPLAY FLMSET-RC-RETCO ", " FLMSET-RC-INFO UPON TERMOUT.
 *
 QUERY-PARMS.
 *
 DISPLAY "ENTER PARAMETER:" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO FLMSET-PARAM

44 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 CALL "FLMQRY" USING FLAMID, FLMSET-RC, FLMSET-PARAM,
 FLMSET-VALUE
 DISPLAY "RETURNCODE, INFOCODE:" UPON TERMOUT
 DISPLAY FLMSET-RC-RETCO ", " FLMSET-RC-INFO UPON TERMOUT
 *
 IF FLMSET-PARAM < 6 OR FLMSET-PARAM > 10
 THEN DISPLAY "VALUE: " FLMSET-VALUE-BIN UPON TERMOUT
 ELSE DISPLAY "VALUE: " FLMSET-VALUE-CHAR UPON TERMOUT
 END-IF.

 * HILFSFUNKTIONEN *

 *
 FEHLER-MELDUNG.
 *
 IF UNZULAESSIG
 THEN DISPLAY "ILLEGAL FUNCTION" UPON TERMOUT
 ELSE
 IF DVS-ERROR
 THEN
 * MOVE LOW-VALUE TO RETCO-INDICATOR
 MOVE ZERO TO HEXDATA
 MOVE RETCO-RED TO HEXDATA-WORT
 PERFORM HEX-TO-CHAR
 DISPLAY "DMS-ERRORCODE: ", BYTE-2-4-CHAR
 UPON TERMOUT
 ELSE
 IF FLAM-ERROR
 THEN
 DISPLAY "FLAM-RETURNCODE: ", RETCO-FLAM
 UPON TERMOUT
 ELSE
 * MOVE LOW-VALUE TO RETCO-INDICATOR
 MOVE ZERO TO HEXDATA
 MOVE RETCO-RED TO HEXDATA-WORT
 PERFORM HEX-TO-CHAR
 DISPLAY "SECINFO-CODE: ", BYTE-2-4-CHAR
 UPON TERMOUT
 END-IF
 END-IF
 END-IF.
 *
 NUMERISCHE-EINGABE.
 *
 ACCEPT EINGABE FROM TERMIN.
 MOVE 0 TO EINGABE-NUM.
 SET RED-INDEX TO 8.
 PERFORM VARYING EIN-INDEX
 FROM 9 BY -1 UNTIL EIN-INDEX = 0
 OR RED-INDEX = 0
 IF BYTE-EIN(EIN-INDEX) NUMERIC
 THEN MOVE BYTE-EIN(EIN-INDEX)
 TO BYTE-RED(RED-INDEX)
 SET RED-INDEX DOWN BY 1
 END-IF
 END-PERFORM.
 IF BYTE-EIN(1) = "-"

FLAM V4.5 (MVS) 45
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 THEN COMPUTE EINGABE-NUM = -1 * EINGABE-NUM
 END-IF.
 *
 HEX-TO-CHAR.
 *
 PERFORM VARYING CHAR-INDEX
 FROM 8 BY -1 UNTIL CHAR-INDEX = 1
 DIVIDE HEXDATA BY 16 GIVING HEX-QUOTIENT
 REMAINDER HEX-REMAINDER
 END-DIVIDE
 ADD 1 TO HEX-REMAINDER
 SET HEX-INDEX TO HEX-REMAINDER
 MOVE HEX-QUOTIENT TO HEXDATA
 MOVE DIGIT-HEX(HEX-INDEX)
 TO BYTE-CHAR(CHAR-INDEX)
 END-PERFORM.
 *
 KEYDESC-EINGABE.
 *
 DISPLAY "KEYPARTS (0 - 8) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO KEYPARTS-ORIG
 IF KEYPARTS-ORIG > 0
 THEN
 DISPLAY "KEYFLAGS (0=NODUP 1=DUPKY) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO KEYFLAGS-ORIG
 DISPLAY "KEYPOS1 (1 - 32767) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO KEYPOS1-ORIG
 DISPLAY "KEYLEN1 (1 - 255) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO KEYLEN1-ORIG
 DISPLAY "KEYTYPE1 (0=DISP 1=BINARY) ?" UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM TO KEYTYPE1-ORIG
 PERFORM VARYING KEYDESC-INDEX FROM 1 BY 1
 UNTIL KEYDESC-INDEX = KEYPARTS-ORIG
 SET DIGIT TO KEYDESC-INDEX
 ADD 1 TO DIGIT
 DISPLAY "KEYPOS", DIGIT, " (1 - 32767) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM
 TO KEYPOS-ORIG(KEYDESC-INDEX)
 DISPLAY "KEYLEN", DIGIT, " (1 - 255) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM
 TO KEYLEN-ORIG(KEYDESC-INDEX)
 DISPLAY "KEYTYPE", DIGIT, " (0=DISP 1=BIN) ?"
 UPON TERMOUT
 PERFORM NUMERISCHE-EINGABE
 MOVE EINGABE-NUM
 TO KEYTYPE-ORIG(KEYDESC-INDEX)
 END-PERFORM
 END-IF.

46 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 *
 KEYDESC-AUSGABE.
 *
 IF KEYPARTS-ORIG > 0
 THEN
 DISPLAY "KEYDESC DER ORIGINALDATEI" UPON TERMOUT
 DISPLAY "KEYPARTS ", KEYPARTS-ORIG UPON TERMOUT
 DISPLAY "KEYFLAGS ", KEYFLAGS-ORIG UPON TERMOUT
 DISPLAY "KEYPOS1 ", KEYPOS1-ORIG UPON TERMOUT
 DISPLAY "KEYLEN1 ", KEYLEN1-ORIG UPON TERMOUT
 DISPLAY "KEYTYPE1 ", KEYTYPE1-ORIG UPON TERMOUT
 PERFORM VARYING KEYDESC-INDEX FROM 1 BY 1
 UNTIL KEYDESC-INDEX = KEYPARTS-ORIG
 SET DIGIT TO KEYDESC-INDEX
 ADD 1 TO DIGIT
 DISPLAY "KEYPOS", DIGIT, " ",
 KEYPOS-ORIG(KEYDESC-INDEX) UPON TERMOUT
 DISPLAY "KEYLEN", DIGIT, " ",
 KEYLEN-ORIG(KEYDESC-INDEX) UPON TERMOUT
 DISPLAY "KEYTYPE", DIGIT, " ",
 KEYTYPE-ORIG(KEYDESC-INDEX) UPON TERMOUT
 END-PERFORM
 END-IF.

FLAM V4.5 (MVS) 47
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.3 User I/O interface

5.3.1 ASSEMBLER example

This example sets up a DUMMY device that returns
immediately the return code END OF FILE during read.
During write all records are accepted and always OK is
returned without actually writing the records to a storage
medium. The functions USRGKY and USRPOS always
deliver the return code INVALID KEY or INVALID
POSITION. The function USRDEL always delivers the
return code INVALID FUNCTION.

This functionality is equivalent with a file assignment to
DUMMY.

By filling in appropriate code into the sequences marked
with three periods, this routine can be used as a template
for specific user written I/O routines.

FLAMUIO START
 TITLE 'FLAMUIO: USER-I/O-MODULE FOR FLAM'

* NAME: FLAMUIO *
* FUNCTION: *
* DUMMY MODULE AS EXAMPLE FOR AN USER-IO-MODULE *
* INTERFACES: *
* USROPN OPEN DATA SET *
* USRCLS CLOSE DATA SET *
* USRGET READ SEQUENTIAL *
* USRGKY READ WITH KEY *
* USRPUT WRITE SEQUENTIAL *
* USRPKY WRITE WITH KEY *
* USRDEL DELETE ACTUAL RECORD *
* USRPOS POSITION IN DATA SET *
* NOTES: *
* ALL FUNCTIONS ARE REENTRANT. *
* WE NEED NO RUN TIME SYSTEM. *
* INDEPENDENT FROM ANY /370-SYSTEM. *

*
* ADDRESSING -/ RESIDENCY MODE
*
FLAMUIO AMODE ANY
FLAMUIO RMODE ANY
*
* RETURN CODES
*
OK EQU 0 NO ERROR
* EQU -1 REQM-ERROR; INVALID HANDLE
* OR INVALID FUNCTION
CUT EQU 1 RECORD TRUNCATED
EOF EQU 2 END OF DATA SET
GAP EQU 3 GAP IN RELATIVE DATA SET
FILL EQU 4 RECORD PADDED

48 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

INVKEY EQU 5 KEY NOT FOUND
RCEMPTY EQU 30 INPUT DATA SET EMPTY
RCNEXIST EQU 31 DATA SET DOES NOT EXIST
RCOPENMO EQU 32 INVALID OPEN MODE
RCFCBTYP EQU 33 INVALID FILE FORMAT
RCRECFOR EQU 34 INVALID RECORD FORMAT
RCRECSIZ EQU 35 INVALID RECORD LENGTH
RCBLKSIZ EQU 36 INVALID BLOCK SIZE
RCKEYPOS EQU 37 INVALID KEY POSITION
RCKEYLEN EQU 38 INVALID KEY LENGTH
RCDSN EQU 39 INVALID DATA SET NAME
* EQU X'0FXXXXXX' OTHER ERRORS
*

* REGISTER EQUATES *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
* DC C'*** MODULE FLAMUIO. '
 DC C'USER-I/O-MODULE FOR FLAM '
 DC C'TIME - DATE ASSEMBLED: '
 DC C'&SYSDATE - &SYSTIME ***'
 TITLE 'USROPN'
USROPN DS 0D
 ENTRY USROPN
 USING USROPN,R10

* NAME: USROPN *
* FUNCTION: *
* OPEN DATA SET *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA, INITIALIZED WITH X'00'. *
* THIS AREA IS CONNECTED TO THIS DATA SET. *
* USABLE AS WORK AREA DURING THE DIFFERENT CALLS *
* FOR THE ACTUAL DATA SET. *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 30 INPUT DATA SET IS EMPTY *
* = 31 DATA SET NOT CONNECTED OR DOES NOT EXIST *
* = 32 ILLEGAL OPEN MODE *
* = 33 ILLEGAL DSORG *
* = 34 ILLEGAL RECORD FORMAT *
* = 35 ILLEGAL RECORD LENGTH *

FLAM V4.5 (MVS) 49
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

* = 36 ILLEGAL BLOCK SIZE *
* = 37 ILLEGAL KEY POSITION *
* = 38 ILLEGAL KEY LENGTH *
* = -1 UNSUPPORTED FUNCTION; GETMAIN ERROR *
* = X'0FXXXXXX' OTHER ERROR CODE *
* 3 -> OPENMODE F OPEN MODE *
* = 0 INPUT (SEQUENTIAL READ) *
* (DATA SET MUST EXIST) *
* = 1 OUTPUT (SEQUENTIAL WRITE) *
* (DATA SET WILL BE OVERWRITTEN) *
* = 2 INOUT (READ OR WRITE SEQUENTIAL OR WITH KEY) *
* (DATA SET MUST EXIST) *
* = 3 OUTIN (WRITE OR READ SEQUENTIAL OR WITH KEY) *
* (DATA SET WILL BE OVERWRITTEN) *
* 4 -> DDNAME CL8 DD-NAME *
* 5 <-> DSORG F DATA SET ORGANIZATION *
* = 0; 8; 16 ... SEQUENTIAL *
* = 1; 9; 17 ... INDEX SEQUENTAIL *
* = 2; 10; 18 ... RELATIVE *
* = 3; 11; 19 ... DIRECT *
* = 4; 12; 20 ... UNSTRUCTURED *
* = 5; 13; 21 ... LIBRARY *
* 6 <-> RECFORM F RECORD FORMAT *
* = 0; 8; 16 ... VARIABELE (V) *
* 8 = BLOCKED 16 = BLOCKED/SPAN NED *
* = 1; 9; 17 ... FIX (F) *
* 9 = BLOCKED 17 = BLOCKED/SPANNED *
* = 2; 10; 18 ... UNDEFINED (U) *
* *
* = 3; 11; 19 ... STREAM (S) *
* 11 = DELIMITER 19 RECORD DESCRIPTOR WORD *
* 7 <-> RECSIZE F DATA LENGTH (WITHOUT DELIMTER OR RDW) *
* = 0 - 32767 *
* RECFORM = V: MAX. RECORD LENGTH OR 0 *
* RECFORM = F: RECORD LENGTH *
* RECFORM = U: MAX. RECORD LENGTH OR 0 *
* RECFORM = S: LENGTH DELIMITER OR RDW *
* 8 <-> BLKSIZE F BLOCK SIZE *
* = 0 UNBLOCKED *
* 9 <-> KEYDESC STRUCT KEY DESCRIPTION *
* *
* KEYFLAGS F OPTIONS *
* = 0 NO DUPLICATE KEYS *
* = 1 DUPLICATES ALLOWED *
* KEYPARTS F NUMBER OF KEY PARTS *
* = 0 - 8 *
* KEYPOS1 F 1. BYTE OF 1. KEYPART *
* = 1 - 32766 *
* KEYLEN1 F LENGTH OF 1. KEYPART *
* = 1 - 255 *
* KEYTYPE1 F DATA TYPE OF 1. KEYPART *
* = 0 PRINTABLE CHARACTER *
* = 1 BINARY *
* . *
* . *
* . *
* KEYPOS8 F 1. BYTE OF 8. KEYPART *

50 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

* = 1 - 32766 *
* KEYLEN8 F LENGTH OF 8. KEYPART *
* = 1 - 255 *
* KEYTYPE8 F DATA TYPE OF 8. KEYPART *
* = 0 PRINTABLE CHARACTER *
* = 1 BINARY *
* *
* 10 <-> DEVICE F DEVICE TYPE *
* = 7; 15; 23 USER DEFINED *
* 11 <-> RECDELIM XL RECORD DELIMITER *
* 12 -> PADCHAR XL1 PADDING CHARACTER *
* 13 <-> PRCTRL F PRINTER CONTROL CHARACTER *
* = 0 NONE *
* = 1 ASA-CHARACTER *
* = 2 MACHINE SPECIFIC CHARACTER *
* 14 -> CLOSDISP F CLOSE PROCESSING *
* = 0 REWIND *
* = 1 UNLOAD *
* = 2 RETAIN / LEAVE *
* 15 -> ACCESS F ACCESS METHOD *
* = 0 LOGICAL (RECORD BY RECORD) *
* = 1 PHYSICAL *
* 16 <-> DSNLEN F LENGTH OF DATA SET NAME OR BUFFER FOR NAME *
* 17 <-> DSN CL DATA SET NAME *
* (DATA SET NAME SHOULD BE RETURNED, IF 1. BYTE *
* OF GIVEN NAME IS C' ' OR A DIFFERENT DATA SET *
* IS ALLOCATED). *
**
*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*
 LM R1,R2,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* OPEN DATA SET
*
* .
* .
* .
*
* SET RETURN CODE TO 'NO ERROR'
*
 LA R0,OK
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)

FLAM V4.5 (MVS) 51
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRCLS'
USRCLS DS 0D
 ENTRY USRCLS
 USING USRCLS,R10

* NAME: USRCLS *
* FUNCTION: *
* CLOSE DATA SET *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* OR DMS-ERROR CODE *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*
 LM R1,R2,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* CLOSE DATA SET
*
* .
* .
* .
*
* SET RETURN CODE TO 'NO ERROR'
*
 LA R0,OK
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)

52 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRGET'
USRGET DS 0D
 ENTRY USRGET
 USING USRGET,R10

* NAME: USRGET *
* FUNCTION: *
* READ A RECORD (SEQUENTIAL) *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 1 RECORD TRUNCATED *
* = 2 END OF FILE *
* = 3 EMPTY SLOT IN RELATIVE RECORD DATA SET *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* 3 <- RECLEN F RECORD LENGTH IN BYTES *
* 4 <- RECORD XL RECORD *
* 5 -> BUFLEN F LENGTH OF RECORD BUFFER IN BYTES *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*
 LM R1,R5,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* READ A RECORD
*
* .
* .
* .
*
* HERE: RETURN CODE 'END OF FILE'
*
 LA R0,EOF

FLAM V4.5 (MVS) 53
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)
 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRGKY'
USRGKY DS 0D
 ENTRY USRGKY
 USING USRGKY,R10

* NAME: USRGKY *
* FUNCTION: *
* READ RECORD WITH GIVEN RECORD-KEY *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 1 RECORD TRUNCATED *
* = 2 END OF FILE *
* = 5 KEY NOT FOUND *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* 3 <- RECLEN F RECORD LENGTH IN BYTES *
* 4 <- RECORD XL RECORD WITH SEARCH KEY *
* 5 -> BUFLEN F LENGTH OF RECORD BUFFER IN BYTES *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*
 LM R1,R5,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* READ RECORD
*
* .
* .

54 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

* .
*
* HERE: RETURN CODE 'RECORD NOT FOUND'
*
 LA R0,INVKEY
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)
 BR R14
*
* RELEASE WORK AREAS REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRPUT'
USRPUT DS 0D
 ENTRY USRPUT
 USING USRPUT,R10

* NAME: USRPUT *
* FUNCTION: *
* WRITE A RECORD (SEQUENTIAL) *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 1 RECORD TRUNCATED *
* = 4 RECORD FILLED WITH PADDING CHARACTER *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* 3 -> RECLEN F RECORD LENGTH IN BYTES *
* 4 -> RECORD XL RECORD *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*
 LM R1,R4,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* WRITE THE RECORD

FLAM V4.5 (MVS) 55
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

*
* .
* .
* .
*
* RETURN CODE: 'NO ERROR'
*
 LA R0,OK
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)
 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *
 **
*
 LTORG
 DROP R10
 TITLE 'USRPKY'
USRPKY DS 0D
 ENTRY USRPKY
 USING USRPKY,R10

* NAME: USRPKY *
* FUNCTION: *
* WRITE A RECORD WITH GIVEN KEY (INDEX SEQUENTIAL) *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 1 RECORD TRUNCATED *
* = 4 RECORD FILLED WITH PADDING CHARACTER *
* = 5 INVALID KEY *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* 3 -> RECLEN F RECORD LENGTH IN BYTES *
* 4 -> RECORD XL RECORD *
* NOTES: *
* IF THE GIVEN KEY IS THE SAME LIKE THE LAST KEY READ *
* THE RECORD SHALL BE OVERWRITTEN (REWRITE). *
* OTHERWISE THE RECORD SHALL BE INSERTED. *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*

56 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 LM R1,R5,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* WRITE THE RECORD
*
* .
* .
* .
*
* RETURN CODE: 'NO ERROR'
*
 LA R0,OK
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)
 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRDEL'
USRDEL DS 0D
 ENTRY USRDEL
 USING USRDEL,R10

* NAME: USRDEL *
* FUNCTION: *
* DELETE ACTUAL RECORD *
* PARAMETER: *
* 1 <-> WORKAREA 256F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 NO ERROR *
* = 5 NO ACTUAL RECORD READ *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *

*
* SAVE REGISTER AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15
*
* LOAD PARAMETER
*

FLAM V4.5 (MVS) 57
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 LM R1,R2,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* DELETE RECORD
*
* .
* .
* .
*
* HERE: RETURN CODE 'NO ACTUAL = RECORD READ'
*
 LA R0,INVKEY
 ST R0,0(R2)
*
* RETURN TO CALLER
*
 LM R14,R12,12(R13)
 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'USRPOS'
USRPOS DS 0D
 ENTRY USRPOS
 USING USRPOS,R10

* NAME: USRPOS *
* FUNCTION: *
* POSITION IN DATA SET *
* PARAMETER: *
* 1 <-> WORKAREA F WORK AREA *
* 2 <- RETCO F RETURN CODE *
* = 0 OK *
* = 5 ILLEGAL POSITION *
* = -1 UNSUPPORTED FUNCTION *
* = X'0FXXXXXX' ELSE *
* 3 -> POSITION F RELATIVE POSITION *
* = 0 NO NEW POSITION *
* = - MAXINT TO BEGINNING OF DATA SET *
* (-2147483648 OR X'80000000') *
* = + MAXINT TO END OF DATA SET *
* (+2147483647 OR X'7FFFFFFF') *
* = - N N RECORDS BACKWARD *
* = + N N RECORDS FORWARD *
* NOTES: *

58 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

* YOU CAN CREATE EMPTY SLOTS (GAPS) USING FORWARD POSITIONING *
* IN A RELATIVE DATA SET IN OUTPUT MODE. *

*
* SAVE REGISTERS AND LOAD PROGRAM REGISTER
*
 STM R14,R12,12(R13)
 LR R10,R15

FLAM V4.5 (MVS) 59
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

*
* LOAD PARAMETER
*
 LM R1,R5,0(R1)
*
* ADDRESS WORK AREA
*
 LR R12,R1
 USING WORKAREA,R12
*
* POSITION RECORD
*
* .
* .
* .
*
* HERE: RETURN CODE -1 UNSUPPORTED FUNCTION
*
 LA R0,0
 BCTR R0,0
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R15,12(R13)
 BR R14
*
* RELEASE WORK AREA REGISTER
*
 DROP R12
*

* LOCAL CONSTANTS *

*
 LTORG
 DROP R10
 TITLE 'FLAMUIO: DUMMY SECTIONS'

* DUMMY SECTIONS *

*
*
WORKAREA DSECT

* WORK AREA ON DOUBLE WORD BOUNDARY *

*
 DS XL1024
*
LWORK EQU *-WORKAREA LENGTH; MAXIMAL 1024 BYTES
 EJECT

60 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

* DUMMY SECTION *

*
*
OPNPAR DSECT

* PARAMETERLIST FOR USROPN
*
* NOTE: ADDRESSES ARE GIVEN, NOT THE VALUES.

ADWORKA DS A WORK AREA
ADRETCO DS A RETCO
ADOPMO DS A OPENMODE
ADDDN DS A DDNAME
ADDSORG DS A DSORG
ADRECFO DS A RECFORM
ADRECSI DS A RECSIZE
ADBLKSI DS A BLKSIZE
ADKEYDE DS A KEYDESC
ADEVICE DS A DEVICE
ADRECDE DS A RECDELIM
ADPADC DS A PADCHAR
ADPRCTL DS A PRCNTRL
ADCLOSDI DS A CLOSDISP
ADACC DS A ACCESS
ADDSNLEN DS A LENGTH DSN
ADDSN DS A DATA SET NAME
 EJECT

* DUMMY SECTION *

*
*
KEYDESC DSECT
*
* KEY DESCRIPTION
*
KEYFLAGS DS F KEYFLAGS
KEYPARTS DS F NUMBER OF KEYPARTS
KEYPOS1 DS F KEYPOSITION OF 1. KEYPART
KEYLEN1 DS F LENGTH OF 1. KEYPART
KEYTYPE1 DS F DATATYPE OF 1. KEYPART
KEYPOS2 DS F
KEYLEN2 DS F
KEYTYPE2 DS F
KEYPOS3 DS F
KEYLEN3 DS F
KEYTYPE3 DS F
KEYPOS4 DS F
KEYLEN4 DS F
KEYTYPE4 DS F
KEYPOS5 DS F
KEYLEN5 DS F
KEYTYPE5 DS F
KEYPOS6 DS F

FLAM V4.5 (MVS) 61
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

KEYLEN6 DS F
KEYTYPE6 DS F
KEYPOS7 DS F
KEYLEN7 DS F
KEYTYPE7 DS F
KEYPOS8 DS F KEYPOSITION OF 8. KEYPART
KEYLEN8 DS F LENGTH OF 8. KEYPART
KEYTYPE8 DS F DATATYPE OF 8. KEYPART
 END

62 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5.3.2 COBOL example

The user I/O can also be implemented in COBOL or in
another higher programming language. The following
example implements two different functions that can be
selected via the symbolic file name (LINKNAME or
DDNAME).

Using the DD-name DATBASE ten records can be read
with the content:

"THIS IS A DATA BASE RECORD FROM THE USER I/O"

Then return code END OF FILE is returned.

Using DD-name "USER..." 20 records can be read with
the content:

"THIS IS A USER RECORD FROM THE USER I/O"

Then return code END OF FILE is returned.

In addition in both cases the call protocols are written to
the terminal. This allows to observe precisely the
sequence of the different calls.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. USERIO.
 AUTHOR. LIMES DATENTECHNIK GMBH.
 *
 * USERIO IS AN EXAMPLE FOR AN USER I/O MODULE TO CONNECT
 * TO FLAM.
 *
 * THE PROGRAM IS WRITTEN TO SUPPORT 2 DIFFERENT DATA SETS IN
 * THE SAME MODULE DISTINGUISHED BY THE DD-NAME (DATBASE OR
 * USER....)
 *
 ENVIRONMENT DIVISION.
 *
 CONFIGURATION SECTION.
 *
 SPECIAL-NAMES.
 SYSOUT IS OUT-PUT.
 *
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 *
 77 ALL-OK PIC S9(8) COMP VALUE 0.
 77 FUNCTION-ERR PIC S9(8) COMP VALUE -1.
 77 REC-TRUNCATED PIC S9(8) COMP VALUE 1.
 77 END-OF-FILE PIC S9(8) COMP VALUE 2.
 77 REC-NOT-FOUND PIC S9(8) COMP VALUE 5.
 77 NEW-HEADER PIC S9(8) COMP VALUE 6.
 77 FILE-EMPTY PIC S9(8) COMP VALUE 30.
 77 FILE-NOT-EXIST PIC S9(8) COMP VALUE 31.
 77 OPEN-MODE-ERR PIC S9(8) COMP VALUE 32.
 77 FILE-NAME-ERR PIC S9(8) COMP VALUE 39.
FLAM V4.5 (MVS) 63
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 *
 77 EXAMPLE-USER-RECORD PIC X(72) VALUE
 "THIS IS A USER RECORD FROM THE USER I/O".
 77 EXAMPLE-DATBAS-RECORD PIC X(72) VALUE
 "THIS IS A DATA-BASE RECORD FROM THE USER I/O".
 77 RECLEN PIC S9(8) COMP VALUE 80.
 **
 /
 LINKAGE SECTION.
 *
 01 USER-WORK.
 03 W-DDNAME PIC X(8).
 03 W-COUNTER PIC S9(7) COMP-3.
 03 W-ELSE PIC X(1012).
 01 RETCO PIC S9(8) COMP.
 01 OPENMODE PIC S9(8) COMP.
 88 OP-INPUT VALUE 0.
 88 OP-OUTPUT VALUE 1.
 01 DDNAME.
 03 DDNAME-1 PIC X(4).
 03 FILLER PIC X(4).
 *
 * IN THIS EXAMPLE WE DO NOT NEED THE FOLLOWING PARAMETERS
 *
 *01 DSORG PIC S9(8) COMP.
 *01 RECFORM PIC S9(8) COMP.
 *01 RECSIZE PIC S9(8) COMP.
 *01 BLKSIZE PIC S9(8) COMP.
 *01 KEYDESC.
 * 03 KEYFLAGS PIC S9(8) COMP.
 * 03 KEYPARTS PIC S9(8) COMP.
 * 03 KEYENTRY OCCURS 8 TIMES.
 * 05 KEYPOS PIC S9(8) COMP.
 * 05 KEYLEN PIC S9(8) COMP.
 * 05 KEYTYPE PIC S9(8) COMP.
 *01 DEVICE PIC S9(8) COMP.
 *01 RECDELIM PIC X(4).
 *01 PADCHAR PIC X.
 *01 PRCTRL PIC S9(8) COMP.
 *01 CLOSMODE PIC S9(8) COMP.
 *01 ACCESS PIC S9(8) COMP.
 *01 DSNLEN PIC S9(8) COMP.
 *01 DATA-SET-NAME PIC X(44).
 *
 * USED FOR READING
 *
 01 DATALEN PIC S9(8) COMP.
 01 DATA-AREA.
 03 DATA-1 PIC X(72).
 03 DATA-2 PIC X(8).
 01 BUFFLEN PIC S9(8) COMP.
 *

64 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 /
 PROCEDURE DIVISION.
 *
 USROPN-MAIN SECTION.
 *
 * OPEN ROUTINE
 *
 USROPN-MAIN-1.
 ENTRY "USROPN" USING USER-WORK, RETCO,
 OPENMODE, DDNAME.
 *
 * IN THIS EXAMPLE WE DO NOT USE THE OTHER PARAMETERS, SO IT IS
 * NOT NECESSARY TO MENTION THEM.
 * FLAM STANDARDS ARE USED:
 * SEQUENTIAL,
 * VARIABLE LENGTH UP TO 32752 BYTE (BUT WE ONLY USE 80 BYTE)
 *
 *
 * WE ONLY SUPPORT OPEN INPUT IN THIS EXAMPLE,
 * CHECK THE OPEN MODE
 *
 IF OP-INPUT
 THEN NEXT SENTENCE
 ELSE MOVE OPEN-MODE-ERR TO RETCO
 DISPLAY "USER I/O CANNOT WRITE TO " DDNAME
 UPON OUT-PUT
 GO TO USROPN-MAIN-99.
 *
 * FOR FURTHER USE, WE STORE THE DD-NAME IN THE
 * GIVEN WORKAREA
 *
 MOVE DDNAME TO W-DDNAME.
 *
 * WE SUPPORT DIFFERENT DATA SETS,
 * CHECK FOR DDNAME "DATBASE", OR THE FIRST 4 BYTE FOR "USER"
 *
 IF DDNAME = "DATBASE"
 THEN PERFORM OPN-DATBASE
 ELSE IF DDNAME-1 = "USER"
 THEN PERFORM OPN-USER
 ELSE MOVE FILE-NAME-ERR TO RETCO
 DISPLAY "USER I/O DOES NOT SUPPORT " DDNAME
 UPON OUT-PUT.
 USROPN-MAIN-99.
 *
 * GO BACK TO FLAM
 *
 GO BACK.
 /
 OPN-DATBASE SECTION.
 *
 * OPEN-ROUTINE FOR A DATA BASE
 *
 OPN-DATBASE-1.
 *
 * HERE YOU HAVE TO PROCESS THE OPEN,

FLAM V4.5 (MVS) 65
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 *
 *
 * INITIALISE COUNTER-FIELD IN WORK AREA
 *
 MOVE ZERO TO W-COUNTER.
 *
 * WE ONLY DISPLAY A MESSAGE
 *
 DISPLAY "USER I/O: OPEN FOR DATABASE IS DONE"
 UPON OUT-PUT.
 OPN-DATBASE-90.
 *
 * SET THE RETURNCODE
 *
 MOVE ALL-OK TO RETCO.
 OPN-DATBASE-99.
 EXIT.
 /
 OPN-USER SECTION.
 *
 * OPEN ROUTINE FOR THE OTHER EXAMPLE
 *
 OPN-USER-1.
 *
 * HERE YOU HAVE TO PROCESS THE OPEN,
 *
 * INITIALISE COUNTER-FIELD IN WORK AREA
 *
 MOVE ZERO TO W-COUNTER.
 *
 * WE ONLY DISPLAY A MESSAGE
 *
 DISPLAY "USER I/O: OPEN FOR " DDNAME " IS DONE"
 UPON OUT-PUT.
 OPN-USER-90.
 *
 * SET THE RETURN CODE
 *
 MOVE ALL-OK TO RETCO.
 OPN-USER-99.
 EXIT.
 /
 USRCLS-MAIN SECTION.
 *
 * CLOSE ROUTINE
 *
 USRCLS-MAIN-1.
 ENTRY "USRCLS" USING USER-WORK, RETCO.
 *
 * WE SUPPORT DIFFERENT DATA SETS,
 * CHECK FOR DDNAME
 *
 IF W-DDNAME = "DATBASE"
 THEN PERFORM CLS-DATBASE
 ELSE PERFORM CLS-USER.
 USRCLS-MAIN-99.
 *

66 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 * GO BACK TO FLAM
 *
 GO BACK.
 /
 CLS-USER SECTION.
 *
 * CLOSE ROUTINE FOR THE OTHER EXAMPLE
 *
 CLS-USER-1.
 *
 * HERE YOU HAVE TO PROCESS THE CLOSE,
 *
 * WE ONLY DISPLAY A MESSAGE
 *
 DISPLAY "USER I/O: CLOSE FOR " W-DDNAME " IS DONE"
 UPON OUT-PUT.
 CLS-USER-90.
 *
 * SET THE RETURN CODE
 *
 MOVE ALL-OK TO RETCO.
 CLS-USER-99.
 EXIT.
 /
 CLS-DATBASE SECTION.
 *
 * CLOSE ROUTINE FOR A DATA BASE
 *
 CLS-DATBASE-1.
 *
 * HERE YOU HAVE TO PROCESS THE CLOSE,
 *
 * WE ONLY DISPLAY A MESSAGE
 *
 DISPLAY "USER I/O: CLOSE FOR DATA BASE IS DONE"
 UPON OUT-PUT.
 CLS-DATBASE-90.
 *
 * SET THE RETURNCODE
 *
 MOVE ALL-OK TO RETCO.
 CLS-DATBASE-99.
 EXIT.
 /
 USRGET-MAIN SECTION.
 *
 * ROUTINE FOR READING RECORDS
 *
 USRGET-MAIN-1.
 ENTRY "USRGET" USING USER-WORK, RETCO,
 DATALEN, DATA-AREA, BUFFLEN.
 *
 * WE SUPPORT DIFFERENT DATA SETS,
 * CHECK FOR DDNAME
 *
 IF W-DDNAME = "DATBASE"
 THEN PERFORM GET-DATBASE

FLAM V4.5 (MVS) 67
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

 ELSE PERFORM GET-USER.
 USRGET-MAIN-99.
 *
 * GO BACK TO FLAM
 *
 GO BACK.
 /
 GET-DATBASE SECTION.
 *
 * GET-ROUTINE FOR A DATA BASE
 *
 GET-DATBASE-1.
 *
 * WE RETURN ALWAYS THE SAME RECORD
 *
 * AFTER THE 10. RECORD WE FINISH (EOF)
 *
 IF W-COUNTER +10
 THEN MOVE EXAMPLE-DATBAS-RECORD TO DATA-1
 MOVE W-DDNAME TO DATA-2
 MOVE RECLEN TO DATALEN
 ADD +1 TO W-COUNTER
 MOVE ALL-OK TO RETCO
 ELSE MOVE ZERO TO DATALEN
 MOVE END-OF-FILE TO RETCO.
 GET-DATBASE-99.
 EXIT.
 /
 GET-USER SECTION.
 *
 * GET ROUTINE FOR THE OTHER EXAMPLE,
 *
 GET-USER-1.
 *
 * WE RETURN ALWAYS THE SAME RECORD,
 *
 * AFTER THE 20. RECORD WE FINISH (EOF)
 *
 IF W-COUNTER +20
 THEN MOVE EXAMPLE-USER-RECORD TO DATA-1
 MOVE W-DDNAME TO DATA-2
 MOVE RECLEN TO DATALEN
 ADD +1 TO W-COUNTER
 MOVE ALL-OK TO RETCO
 ELSE MOVE ZERO TO DATALEN
 MOVE END-OF-FILE TO RETCO.
 GET-USER-99.
 EXIT.

68 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5.4 How to use the user exits

5.4.1 EXK10/EXD10-user exits

The following exit routine can be used for compression as
well as for decompression and has the purpose of
modifying fields within records.

The sample code is found in the library FLAM.SRCLIB.

 TITLE 'SEPARATE: EXIT FOR FLAM COMPRESSION'
SEPARATE CSECT
SEPARATE AMODE ANY
SEPARATE RMODE ANY
**
* THIS PROGRAM SEPARATES FIELDS WITHIN RECORDS WHICH CAN
* BE SEPARATED BY DELIMITER CHARACTERS INTO DIFFERENT FLAM RECORDS.
* THIS ENABLES A BETTER COMPRESSION.
* THE DESIGN OF THE PROGRAM ALLOWS TO MODIFY THE DELIMITER AND
* EVEN THE LENGTH OF THE DELIMITER BY CHANGING ONLY ONE STATEMENT.
*
* THE DELIMITERS ARE REMOVED FROM THE RECORD AND ARE REPLACED
* BY FLAM SYNTAX.
* IF THE RECORD DOES NOT CONTAIN DELIMITERS IT IS PASSED TO
* FLAM WITHOUT MODIFICATIONS.
*
* THE ROUTINE SEPARATE IS ACTIVATED VIA PARAMETER 'EXK10=SEPARATE'
* DURING THE CALL OF FLAM OR FLAMUP.
*
* THE FIELDS CONSIST OF PRINTABLE CHARACTERS SEPARATED BY
* A TWO BYTE LONG DELIMITER (X'0D25').
*
* THE DATA COMPRESSED IN THIS WAY IS TRANSMITTED VIA
* FILE TRANSFER TO A PC, DECOMPRESSED FIELD BY FIELD
* USING FLAM AND WRITTEN TO THE STORAGE MEDIUM (WITH
* DELIMITER OF THE OPERATING SYSTEM, X'0D0A' WITH MSDOS
* OR X'0A' WITH UNIX).
*
* NOTE:
*
* FOR DECOMPRESSION ON A MAINFRAME A FILE WITH
* VARIABLE RECORD LENGTH MUST BE SPECIFIED.
* EACH FIELD SEPARATED DURING COMPRESSION IS WRITTEN
* AS A SEPARATE RECORD. THE DELIMITERS ARE NOT CONTAINED
* IN THE DECOMPRESSED RECORDS.
* THIS MEANS THAT THE ORIGINAL FILE CANNOT BE RECONSTRUCTED
* ON A MAINFRAME.
*
* THIS MODULE IS REENTRANT AND REUSABLE
*
*
*---
*
* AUTHOR: LIMES DATENTECHNIK GMBH
* PHILIPP-REIS-PASSAGE 2

FLAM V4.5 (MVS) 69
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

* D-61381 FRIEDRICHSDORF/TS.
* TEL. 06172-5919-0
* FAX 06172-5919-39
**
*
* INTERFACE: R1 POINTS TO PARAMETER LIST
*
* 0(R1) - A(FUNCTION CODE)
* 4(R1) - A(RETURN CODE)
* 8(R1) - A(A(RECORD)) RECORD POINTER
* 12(R1) - A(RECORD LENGTH)
* 16(R1) - A(WORK AREA) NEW WITH FLAM V2.5
*
**
 EJECT
 STM R14,R12,12(R13) SAVE REGISTERS
 LR R12,R15 ENTRY ADDRESS USED AS PROGRAM BASE
 USING SEPARATE,R12 ASSIGN BASE REGISTER
 USING WORKAREA,R2 BASE REGISTER WORK AREA
 LA 15,0 INITIALISE RETURN CODE WITH 0
*
 L R3,0(,R1) LOAD A(FC)
 CLC 0(4,R3),FCSATZ PASS RECORD ?
 BE SATZUEB == YES
 CLC 0(4,R3),FCOPEN OPEN ?
 BNE RET == NO
*
* AT OPEN TIME RESET WORK AREA FIELDS
*
 L R2,16(,R1) A(WORKAREA)
 MVI FLAG,X'00' RESET FLAGS
 B RET
SATZUEB DS 0H
*
* RECORD WAS PASSED
*
 L R10,8(,R1) A(A(RECORD)) TO R10
 L R4,0(,R10) LOAD A(RECORD)
 L R11,12(,R1) A(RECORD LENGTH)
 L R5,0(,R11) LOAD RECORD LENGTH
 LA R9,0(R5,R4) A(RECORD END)
 L R2,16(,R1) A(WORK AREA)
*
 TM FLAG,SATZDA RECORD ALREADY PRESENT ?
 BNO BEGINN == NO
 TM FLAG,LOESCH DELETE RECORD ?
 BO LOESATZ == YES
*
BEGINNA DS 0H RECORD WAS ALREADY PROCESSED
 L R4,SATZPTR A(FIELD) FROM LAST TIME
*
BEGINN DS 0H
 OI FLAG,SATZDA INDICATE RECORD PRESENT
 LR R7,R4 SAVE A(FIELD BEGIN)
 LR R6,R9 A(FIELD END)
 SR R6,R7 - A(FIELD BEGIN) = L'REMAINDER
 BZ LEERSATZ L'= 0, PASS EMPTY RECORD

70 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 C R6,LTRENNKZ
 BNL SUCH L' L'DELIMITER - HAS NO DELIMITER
 OI FLAG,LOESCH INDICATE DELETE OPERATION FOR NEXT RUN
 LR R4,R9 A(RECORD END)
 B SUCHEND
SUCH DS 0H
 LA R8,1 INCREMENT FOR BX INSTRUCTION
 S R9,LTRENNKZ FOR BX INSTR. SET RECORD END -L'
SUCHLOOP DS 0H
*
* SEARCH STRING IS (DELIMITER)
*
 CLC 0(L'TRENNKZ,R4),TRENNKZ DELIMITER ?
 BE ISTDA == YES
 BXLE R4,R8,SUCHLOOP NEXT CHARACTER
*
 OI FLAG,LOESCH INDICATE DELETE OPERATION FOR NEXT RUN
 LA R4,L'TRENNKZ-1(R4) FIELD IS BIGGER BY L'-1
 B SUCHEND
*
ISTDA DS 0H
 LA R6,L'TRENNKZ(R4) INCREMENT RECORD POINTER
 ST R6,SATZPTR SAVE RECORD POINTER
SUCHEND DS 0H
*
* FILL FLAM PARAMETER LIST
*
 SR R4,R7 FIELD LENGTH
 ST R4,0(R11) IS RECORD LENGTH FLAM
 ST R7,0(R10) RECORD ADDR FOR FLAM
 LA R15,8 RETURN CODE: INSERT RECORD
*
RET DS 0H
*
* RETURN TO FLAM
*
 L R3,4(,R1) LOAD A(RC)
 ST R15,0(,R3) PASS RC
 L R14,12(R13) RESTORE REGISTERS
 LM R0,R12,20(R13)
 BR R14 RETURN
*
LOESATZ DS 0H
 LA R15,4 RETURN CODE: DELETE RECORD
 MVI FLAG,X'00' RESET FLAG
 B RET AND RETURN
*
LEERSATZ DS 0H AFTER DELIMITER AT RECORD END
 OI FLAG,LOESCH INDICATE DELETE OPERATION FOR NEXT RUN
 LA R4,0 RECORD IS EMPTY
 ST R4,0(R11) RECORD LENGTH FOR FLAM
 LA R15,8 RETURN CODE: INSERT RECORD
 B RET AND RETURN
*
* CONSTANTS AND WORK AREAS
*
*

FLAM V4.5 (MVS) 71
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

FCSATZ DC F'4' FUNCTION CODE RECORD PASSED
FCOPEN DC F'0' OPEN
LTRENNKZ DC A(L'TRENNKZ) LENGTH OF DELIMITER
*--
*
* IN CASE OF DIFFERENT DELIMITER MAKE MODIFICATIONS HERE
*
TRENNKZ DC XL2'0D25' DELIMITER TO BE FOUND
*--
*
* REGISTER
*
R0 EQU 0
R1 EQU 1 PARAMETER ADDRESS
R2 EQU 2 BASE REGISTER FOR WORK AREA
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12 BASE REGISTER
R13 EQU 13 A(SAVE AREA)
R14 EQU 14 RETURN ADDRESS
R15 EQU 15 ENTRY ADDRESS
*
 LTORG
*
 DC C'*** MODULE SEPARATE V1.02 FOR FLAM '
 DC C' COPYRIGHT (C) 1990-91 BY LIMES DATENTECHNIK GMBH. '
 DC C'DATE, TIME ASSEMBLED: '
 DC C'&SYSDATE , &SYSTIME '
 DC C'***'
*
* WORKAREA IS PROVIDED BY FLAM (1024 BYTES)
*
WORKAREA DSECT
*
DDNAME DS CL8 DD-NAME OF CURRENT FILE
SATZPTR DS A RECORD POINTER
FLAG DS X INDICATORS FOR PROCESSING
SATZDA EQU 1 RECORD ALREADY PRESENT
LOESCH EQU 2 DELETE RECORD
 END

72 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

5.4.2 EXK20/EXD20-user exits

Since FLAM protects compressed files against
manipulations by applying a checksum, it is possible to
provide encryptions within the user exits with a very low
overhead.

Because the compressed data is already encrypted,
simple deterministic character swapping within the
compressed data cannot be detected easily by an
unauthorized user.

During decompression this character swapping - if not
redone by an authorized user - will lead to a check sum
error and the compressed file cannot be read.

The symmetric construction of the user exits allows to use
the same routine for encryption as well as for decryption
provided that algorithms are used that will restore the
original data when executed twice. This is the case with
mutual character swapping.

Similar results can be obtained with translate tables for
cyclic (cycle length 2) character code exchange.

 TITLE 'EX20 (B) | VERSION 1.00:06/25/91 | '

* COLUMBUS-ASSEMBLER *

* SYMBOLIC CONDITIONS FOR #IF,#WHEN,#WHIL(E),#TOR,#AND,#OR
#LT EQU 4 LESS THAN
#GT EQU 2 GREATER THAN
#EQ EQU 8 EQUAL
#NE EQU 7 NOT EQUAL
#LE EQU 13 LESS OR EQUAL
#GE EQU 11 GREATER OR EQUAL
#LZ EQU 4 LESS THAN ZERO
#GZ EQU 2 GREATER THAN ZERO
#ZE EQU 8 ZERO
#NZ EQU 7 NOT ZERO
#ON EQU 1 ONES
#MI EQU 4 MIXED
#ZO EQU 11 ZEROS OR ONES
#ZM EQU 14 ZEROS OR MIXED
#OM EQU 7 ONES OR MIXED
#F EQU 15 TRUE IN ANY CASE
* FLOATING POINT REGISTERS, GENERAL REGISTERS, COLUMBUS REGISTERS
FA EQU 0
FB EQU 2
FC EQU 4
FD EQU 6
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3

FLAM V4.5 (MVS) 73
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
R#PAR EQU R1
R#BASE EQU R10
R#STACK EQU R13
R#EXIT EQU R14
R#PASS EQU R15
 EJECT
EX20 CSECT
 USING EX20,R#PASS

* NAME: EX20 VERSION: 13.03.91 *
* FUNCTION: *
* FLAMFILE IS ENCRYPTED AND DECRYPTED IN A SIMPLE WAY. *
* *
* THE 16TH AND 17TH CHARACTER ARE SWAPPED WHICH *
* CHANGES THE CHECKSUM. THE COMPRESSED DATA *
* CAN ONLY DECOMPRESSED IF THE SWAP OPERATION *
* DONE AGAIN. *
* PARAMETER *
* 1 -> ID F IDENTIFICATION *
* 2 <- RETCO F RETURN CODE *
* 3 -> RECPTR A RECORD POINTER *
* 4 -> RECLEN F RECORD LENGTH *

*
* SAVE REGISTERS AND LOAD BASE REGISTERS
*
 STM R14,R12,12(R13)
*
* LOAD PARAMETERS
*
 LM R1,R4,0(R1)
* PASS COMPRESSED RECORD
 CLC 0(4,R1),F4
 BC #F-#EQ,#F1001
* LOAD RECORD LENGTH
 L R4,0(R4)
* RECORD LENGTH GREATER 16
 LA R14,16
 CR R4,R14
 BC #F-#GT,#F1002
*
* SWAP 16TH AND 17TH CHARACTER
*
 L R3,0(R3)
 LA R14,0(R3,R14)

74 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

 IC R5,0(R14)
 MVC 0(1,R14),1(R14)
 STC R5,1(R14)
#F1002 DS 0H
#F1001 DS 0H
*
* RETURN CODE = ACCEPT RECORD / NO ERROR
*
 LA R0,0
 ST R0,0(R2)
*
* RETURN
*
 LM R14,R12,12(R13)
 BR R#EXIT
*
* LOCAL CONSTANTS
*
F4 DC F'4'
F16 DC F'16'
 LTORG
 DS 0D
 DROP R#PASS
 END

FLAM V4.5 (MVS) 75
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Application examples Chapter 5

5.5 Using FLAM with other products

5.5.1 Integration with NATURAL

The necessary software for integration between
NATURAL and FLAM was developed in cooperation with
Software AG in Darmstadt.

Beginning with version 2.2, NATURAL is able to write and
read it's workfiles using FLAM. This allows the user to
create and process compressed files directly using
NATURAL programs in a transparent way. This new
facility also supports file formats that were not allowed as
workfiles under NATURAL until now (VSAM files).

The decision about using the FLAM access method for a
NATURAL workfile is made via JCL. No changes to
NATURAL programs are necessary.

The linkage module NATFLAM is part of the FLAM
installation tape for all /390 systems. It must be linked with
the corresponding module from Software AG.

For further information please refer to your distributor or
contact directly the manufacturers Software AG or limes
datentechnik gmbh.

5.5.2 Integration with SIRON

In cooperation with Ton Beller AG in Bensheim (Germany)
a FLAM access module was developed for the product
SIRON®.

This allows to create and process compressed FLAM files
using SIRON queries.

Only slight changes are necessary for the SIRON queries.

No changes in the queries are necessary if an entry for
FLAM is made within GENAT for the corresponding files.

JCL changes are not necessary.

One possibility is to use the NIMM interface:

HOLE file (NIMM=HZFLAM), LIES file (NIMM=HZFLAM),

SCHREIBE file ... (NIMM=HZFLAM)

The other possibility is to specify FLAM within the GENAT
entry for the DD name of the file:

HIN ddname ... MODUL='HZFLAM'

76 FLAM V4.43 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 5 Application examples

By using this GENAT entry, data is compressed or
decompressed with each access automatically.

The necessary module HZFLAM is distributed by Ton
Beller AG. It must be linked to the FLAM modules.

For further information please refer to your distributor or
contact directly the manufacturers Ton Beller GmbH or
limes datentechnik gmbh.

FLAM V4.5 (MVS) 77
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 6:

Installat ion

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 6 Installation

Content

6. Installation 3

6.1 FLAM licence 3

6.2 Component list 4

6.3 Installation of FLAM 5

6.4 Generate default values 5

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Installation Chapter 6

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 6 Installation

6. Installation

6.1 FLAM licence

FLAM is protected against unauthorized use. The autho-
rized usage of FLAM is only possible with a licence
module provided by limes datentechnik.

A licence allows the usage of FLAM on one or multiple
computers.

There is a difference between test licences for a limited
period and unlimited production licences.

A test licence allows the testing and benchmarking of
FLAM with all functions for a defined period (e.g., 30
days).

 Test programs must not be given to a third party.

 During the test period no backup copies from the test.
programs are allowed.

 After the test period expired all test programs must be
deleted.

A production licence allows the unlimited usage of FLAM
on each computer for that a licence was obtained.

FLAM compresses structure oriented using an algorithm
that is a part of the Frankenstein-Limes method. This
method has been patented in the Federal Republic of
Germany and the United States of America and at the
European Patent Bureau, registered by the inventor at the
19.7.1985.

FLAM®, FLAMFILE® and limes datentechnik® are
registered trademarks.

Copyright© 1986-2015 by limes datentechnik gmbh.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Installation Chapter 6

6.2 Component list

FLAM comes with the following components:

FLAM.INSTALL Installation procedure

FLAM.LOAD Load library with FLAM modules

FLAM.OBJ Library with object modules

FLAM.JOBLIB JCL Library for examples and installation

FLAM.SRCLIB Library with source code examples (see FLAM manual,
chapter 5)

FLAM.PANELS Library for FLAM panels

FLAM.CLIST Library for FLAM CLIST procedures

FLAM.SKELS Library for FLAM skeletons

FLAM.MSG Library for FLAM messages

The content of the libraries may vary depending on the
maintenance level of the actual delivery.

Each delivery comes with a table of contents of the
installation tape.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 6 Installation

6.3 Installation of FLAM

Usually, FLAM is loaded from the internet by the user.

If wanted, FLAM is delivered on a CD-ROM.

README text files are included as guides for installation.

Manuals are stored as PDF-documents for reading on the
appropriate system (Windows, Unix, …).

The data for the z/OS operating system are stored as a
FLAMFILE. A binary file transfer (without any CRLF or
ASCII translation) and decompression with FLAM stores
all libraries and data to disk.

LOAD library and license are stored in TSO-XMIT files.
Use TSO RECEIVE command to extract the Libraries.

In addition, downloads of SMPE installation files are
supported.

6.4 Generation of default parameters

FLAM can be adapted easily to specific tasks by supplying
it with suitable parameters. Many tasks will have similar
characteristics so that the parameters will be equal. For
that reason FLAM allows to specify default parameters
that are used with each execution of a FLAM module.

The default parameters are stored within a module
(FLAMPAR) in the load library.

It is only necessary to regenerate that module if the
delivered module FLAMPAR with it's predefined default
values shall not be used.

After the default parameters have been changed FLAM
(and also user programs calling FLAM) must be linked
again.

This allows to use different sets of parameters for different
applications.

The program FLAMGEN can be used to change the
default parameters. To do so, enter the modified
parameters according to the FLAM syntax into the file
GENPAR (see chapter PARAMETER, page ...). The
parameters are then generated into module FLAMPAR by
the program FLAMGEN. It is not necessary to assemble
the module FLAMPAR. Parameters that were not
specified in file GENPAR are not changed and keep their
old value.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Installation Chapter 6

Entries made in the PARM=... instruction are used for the
control of FLAMGEN (like SHOW=..., MSGDISP=...).
These entries are not used as FLAM parameters.

The specification 'INFO=HOLD,MSGDISP=MSGFILE' as
a PARM entry forces FLAMGEN to display the generated
default parameters. For job control reasons FLAMGEN will
terminate with condition code 4 in this case.

The procedure FLAM.JOBLIB(INST02) contains the JCL
for parameter generation. It must be adapted to the user
requirements.

Example:

-------- JOB09128 IEF097I FLAM25I2 - USER FLAM27 ASSIGNED
11.17.55 JOB09128 ICH70001I FLAM27 LAST ACCESS AT 11:15:50 ON TUESDAY, JULY
11.17.55 JOB09128 $HASP373 FLAM27I2 STARTED - INIT A - CLASS A - SYS
11.17.55 JOB09128 IEF403I FLAM27I2 - STARTED - TIME=11.17.55
11.17.56 JOB09128 - --TIMINGS (MINS.)--
11.17.56 JOB09128 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB
11.17.56 JOB09128 -FLAM27I2 STEP1 00 197 187 .00
11.18.03 JOB09128 -FLAM27I2 STEP2 00 606 1440 .00
11.18.03 JOB09128 -FLAM27I2 STEP3 04 22 74 .00 .
11.18.03 JOB09128 IEF404I FLAM27I2 - ENDED - TIME=11.18.03
11.18.03 JOB09128 -FLAM27I2 ENDED. NAME-LIMES-06172/5919-0 TOTAL TCB CPU
TI
11.18.03 JOB09128 $HASP395 FLAM27I2 ENDED
0
1 //FLAM27I2 JOB XXXXXXXX,'LIMES-06172/5919-0',CLASS=A,TIME=(,8),
 // MSGLEVEL=(1,1),MSGCLASS=X,NOTIFY=FLAM27

 *** GENERATION OF FLAM DEFAULT PARAMETER * INST02 *
 ***---*
 *** *
 *** ALL FLAM PARAMETER CAN BE ALTERED TO YOUR DEFAULT *
 *** VALUE. *
 *** THE NOT GIVEN PARAMETER REMAIN AS THEY WERE BEFORE. *
 *** *
 *** INFO=HOLD AS PARM-VALUE FOR FLAMGEN DISPLAYS THE *
 *** ACTUAL FLAM DEFAULT PARAMETER. *
 *** *
 *** THE JOB CONTAINS THE FOLLOWING STEPS: *
 *** *
 *** 1. GENERATES NEW DEFAULT PARAMETER *
 *** 2. LINKS NEW MODULES *
 *** 3. SHOWS THE GENERATED PARAMETER *
 *** *

 ***--
 *** STEP 1: ALTER DEFAULT PARAMETER
 ***--
2 //STEP1 EXEC PGM=FLAMGEN
3 //STEPLIB DD DSN=FLAM27.FLAM.LOAD,DISP=SHR
4 //FLPRINT DD SYSOUT=*
5 //FLAMOBJ DD DSN=&&GENDAT,DISP=(NEW,PASS),
 // SPACE=(80,(200,100)),UNIT=SYSDA

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 6 Installation

 *** THIS DATA SET CONTAINS YOUR NEW DEFAULT PARAMETER:

6 //GENPAR DD *

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Installation Chapter 6

 ***---
 *** STEP 2: LINK MODULES
 *** (AMODE, RMODE ARE ALLOWED TO CHANGE TO YOUR USAGE)
 ***---
 *** FLAMPAR, FLAMREC, FLAMUP *
 ***---
7 //STEP2 EXEC PGM=HEWL,PARM='RENT,REUS,LIST,MAP',
 // COND=(4,LT,STEP1)
8 //SYSPRINT DD SYSOUT=*
9 //SYSUT1 DD DSN=&&SYSUT1,SPACE=(1024,(200,40)),
 // UNIT=SYSDA
 *** FOR AUTOMATIC CALL:
10 //SYSLIB DD DSN=*.STEP1.STEPLIB,DISP=SHR
 *** OUTPUT MODULE LIBRARY:
11 //SYSLMOD DD DSN=*.STEP1.STEPLIB,DISP=SHR
 *** SECONDARY INPUT DATA SETS:
12 //GENOBJ DD DSN=&&GENDAT,DISP=(OLD,PASS)
13 //FLMOBJ DD DSN=FLAM27.FLAMV27.OBJ,DISP=SHR
 *** PRIMARY INPUT DATA SET:
14 //SYSLIN DD *
 ***--
 *** STEP 3: SHOW GENERATED PARAMETER
 ***--
15 //STEP3 EXEC PGM=FLAMGEN,PARM='INFO(HOLD),MSGDISP(MSGFILE)'
16 //STEPLIB DD DSN=*.STEP1.STEPLIB,DISP=SHR
17 //FLPRINT DD SYSOUT=*
18 //GENPAR DD DUMMY

FLM0448 COPYRIGHT (C) 1989-1999 BY LIMES DATENTECHNIK *)
FLM0448 ACCESS =LOG BLKMODE =YES CLIMIT = 0
FLM0448 MODE =CX8 CODE =EBCDIC FILEINFO=YES
FLM0448 HEADER =YES INFO =YES KEYDISP =OLD
FLM0448 LOOP =NO MAXBUFF = 32768 MAXREC = 255
FLM0448 MAXSIZE = 512 MSGDISP =MSGFILE NAMEDISP=NEW
FLM0448 OPENMODE=OUTPUT TRUNCATE=NO TRANSLAT=
FLM0448 EXD10 = EXD20 = EXK10 =
FLM0448 EXK20 = FLAMDDN =FLAMFILE IDDN =FLAMIN
FLM0448 ODDN =FLAMOUT MSGDDN =FLPRINT PARDDN =FLAMPAR
FLM0448 CLOSDISP=REWIND DSORG =SEQUENT RECFORM =FIXBLK
FLM0448 KEYLEN = 8 BLKSIZE = 6144 DEVICE =DISK
FLM0448 ICLOSDIS=REWIND IDSORG =SEQUENT IRECFORM=VARBLK
FLM0448 IRECSIZE= 32752 IRECDEL =00000000 IKEYPOS = 1
FLM0448 IKEYLEN = 8 IBLKSIZE= 32760 IDEVICE =DISK
FLM0448 OCLOSDIS=REWIND ODSORG =SEQUENT ORECFORM=VARBLK
FLM0448 ORECSIZE= 32752 ORECDEL =00000000 OKEYPOS = 1
FLM0448 OKEYLEN = 8 OBLKSIZE= 32760 ODEVICE =DISK
FLM0448 FLAMFILE=
FLM0448 FLAMIN =
FLM0448 FLAMOUT =
FLM0448 MSGFILE =
FLM0448 PARFILE =
FLM0428 RECEIVED: INFO=YES,MSGDISP=MSGFILE,PARDDN=GENPAR **)
FLM0410 DATA SET NAME : JES2.JOB09128.I0000101 ***)
FLM0428 RECEIVED: MODE(CX8),MAXBUFFER(1) ***)
FLM0440 FLAM COMPRESSION NORMAL END

.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 6 Installation

. Messages of STEP2 (Linkage Editor)

.

FLM0448 COPYRIGHT (C) 1989-1999 BY LIMES DATENTECHNIK GMBH
FLM0448 ACCESS =LOG BLKMODE =YES CLIMIT = 0
FLM0448 MODE =CX8 CODE =EBCDIC FILEINFO=YES
FLM0448 HEADER =YES INFO =YES KEYDISP =OLD
FLM0448 LOOP =NO MAXBUFF = 32768 MAXREC = 255
FLM0448 MAXSIZE = 512 MSGDISP =MSGFILE NAMEDISP=NEW
FLM0448 OPENMODE=OUTPUT TRUNCATE=NO TRANSLAT=
FLM0448 EXD10 = EXD20 = EXK10 =
FLM0448 EXK20 = FLAMDDN =FLAMFILE IDDN =FLAMIN
FLM0448 ODDN =FLAMOUT MSGDDN =FLPRINT PARDDN =FLAMPAR
FLM0448 CLOSDISP=REWIND DSORG =SEQUENT RECFORM =FIXBLK
FLM0448 KEYLEN = 8 BLKSIZE = 6144 DEVICE =DISK
FLM0448 ICLOSDIS=REWIND IDSORG =SEQUENT IRECFORM=VARBLK
FLM0448 IRECSIZE= 32752 IRECDEL =00000000 IKEYPOS = 1
FLM0448 IKEYLEN = 8 IBLKSIZE= 32760 IDEVICE =DISK
FLM0448 OCLOSDIS=REWIND ODSORG =SEQUENT ORECFORM=VARBLK
FLM0448 ORECSIZE= 32752 ORECDEL =00000000 OKEYPOS = 1
FLM0448 OKEYLEN = 8 OBLKSIZE= 32760 ODEVICE =DISK
FLM0448 FLAMFILE=
FLM0448 FLAMIN =
FLM0448 FLAMOUT =
FLM0448 MSGFILE =
FLM0448 PARFILE =
FLM0440 FLAM COMPRESSION NORMAL END

*) Display of the old default parameters.

**) Here the parameters specified for FLAMGEN are recorded.

***) The FLAM parameters as read from file JES2.JOB09128.I0000101 are recor-
ded. Because direct entry was used (GENPAR DD *) the job name generated
by JES is displayed.

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 7:

Technical data

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 7 Technical data

Content

7. Technical data 3

7.1 System environment 3

7.2 Memory requirements 4

7.3 Performance 4

7.4 Statistics 5

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Technical data Chapter 7

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 7 Technical data

7. Technical data

7.1 System environment

FLAM can be executed under the operating systems
MVS/XA, MVS/ESA, OS/390 and z/OS from IBM.

FLAM does not need authorization and does not need to
be started out of an authorizised library.

FLAM is independent from the address mode (24- or 31
bit) and from the load address (upper/lower address
space). But you cannot use data from above the bar (2
GB).

Because of compatibility (calling application modules may
reside in the lower address space) FLAM modules are
loaded into the lower address space. The address mode is
inherited from the calling program.

As an option, FLAM can be configured to be loaded into
the upper address space (see installation procedure
FLAM.JOBLIB (INST02)).

If FLAM runs in the upper address space, it is still possible
to access non-VSAM files via FLAM.

Compressed files created with earlier version of FLAM can
be decompressed with this version. Within version 4
FLAM is upwards as well as downwards compatible
always supporting the functional range of the lower
version.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Technical data Chapter 7

7.2 Memory requirements

The components of FLAM require static memory for object
code. Additional dynamic memory requests are issued for
variables and working areas. Additionally the operating
system will allocate I/O buffers for files. The listed values
are approximated.

The dynamic memory needed depends on the length of
the records to be processed and the file access method.

All memory requests allocate memory below or above the
16 MB line according to the current address mode.

7.3 Performance

The following benchmarks can give a clue what
compression effects can be achieved:

Typical user files (like FIBU, MATDAT) 70 - 90%

Diverse listings (like ASSEMBLER listings) 65 - 85%

Electronic data interchange files (DTAUS) 70%

XML-files for data interchange (EBICS) > 90%

In principle the compression effect depends on the file and
record structure as well as on the actual data. Also the
compression mode and the parameters specified have an
influence.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

static dynamic matrix
FLAM / FLAMUP
with subroutines

360 KB 80-160 KB 6-5300 KB

record level
interface with
subroutines

290 KB 60-140 KB 6-5300 KB

BIFLAMK 30 KB
BIFLAMD 30 KB

Chapter 7 Technical data

7.4 Statistics

If the parameter SHOW=ALL is specified FLAM and
FLAMUP will display statistical data concerning the
execution of compression or decompression.

FLAM calculates and displays the number of records and
bytes and the compression ratio. During compression the
number of records and bytes is calculated both for input
and output, and the compression ratio is calculated as the
relation between number of input bytes and number of
output bytes, expressed as a percentage. The number of
bytes is calculated from the net (true) lengths of the data
records, i.e. not taking the record length field into account.

The compression effect is always computed as the
relation between input bytes and output bytes.

If user exits modify the record number or record length the
statistics may not be correct.

During decompression the number of records and bytes
on the FLAMFILE is evaluated. Also the number of
decompressed records and the number of bytes in these
records is displayed. The number obtained during
compression and decompression are identical if no user
exits are used.

FLAM also displays the elapsed time of the process. This
includes the mounting times during tape I/O as well. In
addition the CPU time used is displayed. Files can be
separated during decompression.

When group files are being compressed or
decompressed, intermediate statistics comprising the
number of records and bytes of the original and
compressed records are displayed for all partially
compressed data.

At the end of a group file, overall statistics comprising the
number of records and bytes, the compression effect and
the time values are displayed. The file name of the
compressed file is repeated before these overall statistics;
if necessary, a message is displayed informing the user
that not all files could be processed.

When group files are being decompressed, only the
number of records and bytes in the compressed records
that have been processed are listed in the overall
statistics; the values for the original records are only listed
in the intermediate statistics for the individual files. When
a file set is being processed, the statistics are displayed
separately for each file. Only the time values are displayed
altogether at the end of the program run.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Technical data Chapter 7

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 8:

Messages

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

Content

8. Messages 3

8.1 Messages from the Utility 3

8.2 Message Listing 4

8.3 FLAM return codes 20

8.4 Condition codes 29

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

8. Messages

8.1 Messages from the Utility

Messages are only printed by the FLAM utility or by the
subprogram FLAMUP. No messages are printed by the
record level interface FLAMREC.

With parameter MSGDISP it is possible to control the
output medium for messages.

MSGDISP=TERMINAL Currently not supported
(use ‘allocate dsn(*) dd(flprint)’ instead in TSO).

MSGDISP=MSGFILE The messages are written into a catalogued file. The DD-
NAME of this file is FLPRINT by default and can be
modified using parameter MSGDDN=<name>.

MSGDISP=SYSTEM The messages are issued using the WTO macro to the
operator console (route code 11).

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

8.2 Message Listing

FLAM messages

FLM0400 FLAM COMPRESSION VERSION ... ACTIVE ON yyyy/
mm/dd hh:mm

Explanation The FLAM compression system was activated. Version,
year, month, day and time of start ar protocolled.
FLAM means: Frankenstein-Limes-Access-Method.
FLAM is a registered trademark ™ copyright © by limes
datentechnik® gmbh.

Action None.

FLM0401 PARAMETER REJECTED. INVALID VALUE: ...

Explanation The specified parameter has an invalid value.

Action Correct parameter according to FLAM documentation and
start again.

FLM0402 PARAMETER REJECTED. SYNTAX ERROR

Explanation The command was rejected because it contained a syntax
error. The wrong command was protocolled with message
FLM0428.

Action Enter command with corrected syntax.

FLM0403 PARAMETER REJECTED. INVALID KEYWORD

Explanation The command was rejected because it contained an
invalid keyword. The valid keywords and their
abbreviations are documented in the interface
documentation.

Action Correct the invalid keyword and start again.

FLM0404 PARAMETER REJECTED. PARAMETER VALUE NOT
DECIMAL

Explanation The command was rejected because it contained a non
numeric operand where a numeric operand was expected.
The wrong command was protocolled with message
FLM0428.

Action Repeat the command using a numeric operand.
4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

FLM0405 PARAMETER REJECTED. OPERAND IS TOO LONG

Explanation The command was rejected because the value of an
operand was too long. The wrong command was
protocolled with message FLM0428.

Action Repeat the command with corrected value assignment.

FLM0406 INPUT RECORDS / BYTES: ...

Explanation Number of records and bytes compressed with FLAM.

Action None.

FLM0407 OUTPUT RECORDS / BYTES: ...

Explanation Number of records and bytes in the compressed file
(FLAMFILE).

Action None.

FLM0408 CPU - TIME: ...

Explanation CPU-time consumed by FLAM for compression.

Action None.

FLM0409 RUN - TIME: ...

Explanation Elapsed time for compression with FLAM.
This includes the time needed for tape mounting.

Action None.

FLM0410 DATA SET NAME: ...

Explanation Name of the file compressed with FLAM (FLAMIN) and of
the compressed file (FLAMFILE) or of the parameter file
(FLAMPAR).

Action None.

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

FLM0411 DATA SET ORGANIZATION NOT SUPPORTED

Explanation The input file is not compressed because FLAM does not
support this file organization.

Action Assign a file that is supported by FLAM.

FLM0413 COMPRESSION ERROR CODE: ...

Explanation Compression aborted. Explanation of error code:

15 = Record length greater than 32764 or negative

16 = Record length greater than matrix size -4

20 = Illegal open mode

21 = Illegal size of matrix buffer

22 = Illegal compression method

23 = Illegal code in FLAMFILE

24 = Illegal MAXREC specification

25 = Illegal record length

26 = Illegal character code

40 = Module or table cannot be loaded

41 = Module cannot be called

42 = Module cannot be unloaded

43 - 49 = Abortion caused by exit routine

98 = Not all files were processed

Action Usually, invalid parameters have been transferred for
FLAM (see chapter 3). Correct these parameters.

The error codes 15, 16, 25 and 40 - 49 are self
explanatory.

For other error-codes please provide error documentation
and contact your distributor.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

FLM0414 FLAMFILE SPLIT ACTIVE

Explanation Splitting was activated. Creates or reads a number of
fragments (files) of a FLAMFILE.

Action None.

FLM0415 USED PARAMETER: ...

Explanation Protocol of parameters used for compression.

Action None.

FLM0416 COMPRESSION REDUCTION IN PERCENT: ...

Explanation The input data was reduced around ... percent.

Action None.

FLM0421 INPUT SUPPRESSED

Explanation Input file was not processed.

Action None.

FLM0422 INPUT DATA SET IS EMPTY

Explanation The file to be compressed turned out to be empty.

Action None.

FLM0424 ILLEGAL FUNCTION OR INSUFFICIENT MEMORY

Explanation An invalid function was requested or the available memory
is insufficient.
Possibly a licence error is detected, so all function calls
are illegal.

Action Check memory space and increase the REGION entry if
necessary.
Check your licence number (has your environment
changed ?).

FLM0426 MESSAGE NOT FOUND

Explanation Error within the FLAM modules.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Action Please provide error documentation and contact your
distributor.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

FLM0428 RECEIVED: ...

Explanation Protocol of the entered compression parameters.

Action None.

FLM0429 NAME GENERATION ERROR: NUMERIC RANGE
OVERFLOW

Explanation During split a new filename or DD-name has to be created
but the numeric range overflows (e.g. JOE9: adding 1 to
value 9 leads to 10, but there is only one byte to change,
JOE09 is correct -> JOE10).

Action Use more numeric characters in the file (DD-) name.

FLM0431 FLAMFILE SPLIT NO. nn MISSING

Explanation On decompression a fragment of the splitted FLAMFILE is
missing. The fragment has the number nn.

Action Check the filename, the catalog, is it free to read,...

Correct the error and start again.

FLM0432 FLAMFILE SPLIT SEQUENCE ERROR. FOUND NO. nn,
NEED NO. mm

Explanation On decompression a fragment of the serially splitted
FLAMFILE is read. But the new file is number nn,
expected number mm.

Action Check the ascending order of the files and start again.

FLM0433 FLAMFILE SPLIT NO. nn IS NOT A CONTINUATION

Explanation On decompression a fragment of a splitted FLAMFILE is
read. But this new one is not an affiliation. It is an original
fragment, but it belongs to a different FLAMFILE.

Action Check for the correct file and start again.

Note Please remember: each compression leads to an unique

FLAMFILE. So it is not allowed to mix fragments of
different runs.

FLM0435 FLAMFILE MAC: nnnnnnnnnnnnnnnn
 MEMBER MAC :

Explanation: Protocol of the calculated Hash-MACs of the entire
FLAMFILE, or the member of the FLAMFILE.

Action: None.

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Note: Using AES encryption, every FLAMFILE is secured with a
couple of MACs. Every member of a GROUP-FLAMFILE
is secured separately. These MACs are for safety and
integrity of every level (matrix, member, file) in the
FLAMFILE.

FLM0440 FLAM COMPRESSION NORMAL END

Explanation The FLAM compression has been completed successfully.

Action None.

FLM0441 ERROR IN OPERATION: ...

Explanation During this function an error occurred. The error code is
documented in the following message.

Action None.

FLAMSYN Syntax analysis for parameter input

FLAMREQM Memory request

FLAMFREE Memory release

FLAMSCAN Analysis of a selection or conversion rule for file names

FLAMUP Executive control

WCDxxx Process file names in wildcard syntax

DYNxxx Dynamic loading of modules and tables

TIOxxx Terminal input/output

MSGxxx Message output

TIMxxx Timing

FIOxxx File input/output

FLMxxx FLAM record level interface

FLM0442 DMS ERROR CODE: ... DD-NAME: ...

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

Explanation During processing of the VSAM file or PO data set with
the reported DD-name an error has occurred.

Action Analyze error code and correct file.

FLM0443 FLAM ERROR CODE: ... DD-NAME: ...

Explanation During processing of the file with the reported DD-name
an error has occurred. Explanation of the error code:

30 = Input file empty

31 = Input file does not exist

32 = Illegal open mode

33 = Illegal file type

34 = Illegal record format

35 = Illegal record length

36 = Illegal block length

37 = Illegal key position

38 = Illegal key length

39 = Illegal file name

40 = Module or table cannot be loaded

43 - 49 = Abort caused by user exit

52 = Too many or invalid keys

98 = Not all files were processed

Action Analyze error code and correct file accordingly.

FLM0444 COMPRESSION-LIMIT WARNING

Explanation Compression ratio is worse than the specified limit (see
CLIMIT, 3.11). Condition Code 80 is set.

Action None.

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

FLM0445 Message of the KMEXIT module

Explanation: Message data returned from the KMEXIT routine.

Action: None.

FLM0448 COPYRIGHT (C) 1989-2014 BY LIMES DATENTECHNIK
GMBH nnnnnn.

Explanation Copyright message with customer licence number resp.
expiration date of test installation.

Action None.

FLM0449 FLAM COMPRESSION TERMINATED WITH ERRORS

Explanation Compression has been completed with errors. Condition
Code 8 or 12 or 16 is set.

Action None, resp. according to previous message.

FLM0450 FLAM DECOMPRESSION VERSION ... ACTIVE ON
yyyy/mm/dd hh:mm

Explanation The FLAM decompression system was activated. Version,
year, month, day and time of start ar protocolled.
FLAM means: Frankenstein-Limes-Access-Method. FLAM
is a registered trademark ™ copyright © by limes
datentechnik® gmbh.

Action None.

FLM0456 INPUT RECORDS/BYTES: ...

Explanation Number of records and bytes in the compressed file
(FLAMFILE).

Action None.

FLM0457 OUTPUT RECORDS/BYTES: ...

Explanation Number of records and bytes decompressed with FLAM.

Action None.

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

FLM0458 CPU - TIME: ...

Explanation CPU-time consumed by FLAM for decompression.

Action None.

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

FLM0459 RUN - TIME: ...

Explanation Elapsed time for decompression with FLAM. This includes
the time needed for tape mounting.

Action None.

FLM0460 DATA SET NAME: ...

Explanation Name of the file to be decompressed (FLAMFILE) or of
the target file (FLAMOUT).

Action None.

FLM0461 DATA SET ORGANIZATION NOT SUPPORTED

Explanation The target file cannot be created because FLAM does not
support this file organization.

Action Assign an output file that FLAM can support.

FLM0462 WRITTEN RECORDS/BYTES: ...

Explanation Number of records and bytes written into the target file. A
difference to the original file FLM0457 is caused by file
conversion.

Action None.

FLM0463 DECOMPRESSION ERROR CODE: ...

Explanation Decompression was terminated with error code (See
also chapter 8.4)

10 = File none FLAMFILE

11 = FLAMFILE format error

12 = Record length error

13 = File length error

14 = Check sum error

20 = Invalid OPENMODE

21 = Invalid size of matrix buffer

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

22 = Invalid compression method

23 = Invalid code in FLAMFILE

24 = Invalid MAXRECORDS parameter

25 = Invalid record length

26 = Invalid character code

40 = Module or table cannot be loaded

41 = Module cannot be called

42 = Module cannot be unloaded

43 - 49 = Abortion caused by exit routine

52 = Too many or invalid keys

57 = Invalid partially compressed data length

60 - 78 FLAM syntax error

96 = No file name found

98 = Not all files were processed

Action In case of error code 10 - 14 the FLAMFILE has been
modified. The error codes 40 - 49 are self explanatory.
In case of error code 60 - 78 please provide error
documentation and contact your distributor.

FLM0465 USED PARAMETER: ...

Explanation Protocol of the decompression parameters used.

Action None.

FLM0468 SPLIT RECORDS / BYTES: …

Explanation Counter of records and Bytes of the actual fragment of the
splitted FLAMFILE.
Cause of insertion of control and info bytes during split the
counters differ from the numbers of compressed
records/bytes (FLM0407, FLM0456).

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Action None.

FLM0469 COMPRESSED FILE FLAM-ID: ...

Explanation FLAM system code of original file.
Some examples:

0080 MS-DOS

000E Windows (all versions)

0101 IBM MVS (OS390, z/OS)

0102 IBM VSE (zVSE)

0103 IBM VM

0104 IBM 81xx

0105 IBM DPPX/370

0106 IBM AIX

0107 IBM OS400

0109 Linux/S390

02xx UNISYS

0301 DEC VMS

0302 DEC ULTRIX

0401 SIEMENS BS2000

0402 SIEMENS SINIX

0403 SIEMENS SYSTEM V

0501 NIXDORF 886x

0502 NIXDORF TARGON

06xx WANG

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

07xx PHILLIPS

08xx OLIVETTI

09xx TANDEM

0Axx PRIME

0Bxx STRATUS

11xx INTEL 80286

12xx INTEL 80386

13xx INTEL 80486

15xx Motorola 68000

xx04 UNIX

Action None.

FLM0470 SPLIT ID: …

Explanation To identify each fragment of a splitted FLAMFILE, a
unique code is displayed.
The correspondig file name was displayed in FLM0410 or
FLM0460.

Action None.

FLM0471 OUTPUT SUPPRESSED

Explanation Output file was not processed.

Action None.

FLM0472 INPUT DATA SET IS EMPTY

Explanation The file to be compressed (FLAMFILE) is empty.

Action Assign a FLAMFILE for decompression.

FLM0474 ILLEGAL FUNCTION OR INSUFFICIENT MEMORY

FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Explanation An illegal function was requested or the available memory
space is insufficient.
Possibly a licence error is detected, so all function calls
are illegal.

Action Check memory space and increase the REGION entry if
necessary.
Check your licence number (has your environment
changed ?).

FLM0475 CRYPTOKEY WRONG OR MISSING

Explanation The FLAMFILE has been encrypted and you entered a
wrong key for decryption, or you forgot it at all.

Action Please enter the correct key for decryption (parameter

CRYPTOKEY).

FLM0476 NO. SPLITS EXCEEDS MAXIMUM OF nn

Explanation A FLAMFILE has been splitted parallel in more fragments
than the actual version is able to read. The actual version
brings up to nn fragments together.

Action Please use the corresponding newer version of FLAM.

FLM0479 DCB ATTRIBUTES CHANGED

Explanation The file attributes for the target file differ from that of the
original file. The file is converted into the new format.

Action None; or use other file format for target file.

FLM0480 DCB PARAM OLD: ... NEW: ...

Explanation Listing of the original file attributes and the file attributes
used for decompression.

Action None, or define target file differently.

FLM0481 RECORD TRUNCATED

Explanation A record was truncated.The decompressed file contains
one (ore more) records whose redord length is longer than
the specified record length in the volume catalogue.
If TRUNCATE=NO is set the program is terminated with
error.

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

Action To enforce conversion the program execution has to be
repeated with parameter TRUNCATE=YES. Assign a file
with a bigger record length for output.

FLM0482 OLD ...

Explanation Protocol of the FLAM file header.

 OLD DSN : File name of original file

 OLD CODE : Original file code

 OLD DSORG : Original file organization

 OLD RECFORM : Original file format

 OLD RECSIZE : Original file record length

 OLD BLKSIZE : Original file block size

 OLD KEYPOS : Original file key position

 OLD KEYLEN : Original file key length

Action None.

FLM0483 ACTUAL FLAMFILE VERSION NOT SUPPORTED: nn

Explanation: The actual FLAM version is unable to decompress/decrypt
the FLAMFILE. On compression, new parameters or
functions have been used that are not compatible to this
actual version. nn identifies the FLAMFILE version.

Action: Please use the newest FLAM version.

FLM0485 FLAMFILE MAC: nnnnnnnnnnnnnnnn
 MEMBER MAC :

Explanation: Protocol of the calculated Hash-MACs of the entire
FLAMFILE, or the member of the FLAMFILE.

Action: None.

Note: Using AES encryption, every FLAMFILE is secured with a
couple of MACs. Every member of a GROUP-FLAMFILE
is secured separately. These MACs are for safety and
integrity of every level (matrix, member, file) in the
FLAMFILE.

FLAM V4.5 (MVS) 19
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

FLM0487 USER HEADER: …

Explanation Protocol of the user header, if any. The message ends
with three points ‘…’, if the line is too short for the entire
data.

Action None..

FLM0488 INPUT WAS NOT COMPRESSED BY FLAM

Explanation The input data was not compressed with FLAM. Condition
Code 88 is set.

Action Assign a compressed file that was compressed with
FLAM.

20 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

FLM0490 FLAM DECOMPRESSION NORMAL END

Explanation The decompression with FLAM was completed
successfully.

Action None.

FLM0491 ERROR IN OPERATION: ...

Explanation During this function an error occurred. The error code is
documented in the following message.

Action None.

FLM0492 DMS ERROR CODE: ... DD-NAME: ...

Explanation During processing a VSAM file or PO data set with the
specified DD-name an error has occurred.

Action Analyze error code and correct file.

FLM0493 FLAM ERROR CODE: ... DD-NAME: ...

Explanation During processing the file with the specified DD-Name an
error has occurred.
Some recent explanations of error codes (more -> ch.
8.4):

30 = Input file empty

31 = Input file does not exist

32 = Illegal open mode

33 = Illegal file type

34 = Illegal record format

35 = Illegal record length

36 = Illegal block length

37 = Illegal key position

38 = Illegal key length

39 = Illegal file name
FLAM V4.5 (MVS) 21
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Action Analyze error code and correct file.

FLM0499 FLAM DECOMPRESSION TERMINATED WITH
ERRORS

Explanation Decompression with FLAM was terminated with an error.
Condition Code 8 or 12 or 16 is set.

Action Analyze error.

22 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

8.3 FLAM return codes

FLAM reports certain exceptional situations and errors via
system-neutral return codes at the various interfaces
(FLAMUP, FLAMREC and USERIO).

The values below are decimal numbers.

Where error codes relate to files, the file is marked in the
most significant byte:

X’AF’ error on accessing FLAMOUT
X’CF’ FLAMPAR
X’EF’ FLAMIN
X’FF’ FLAMFILE

FLAM uses this identifier to select a suitable message.

The last three bytes are the error code of the special data
management routine (e.g. VSAM, PO-Data Sets).

Security violations are marked in the 2. byte:

00kkmmmm.

kk identifies where the error was detected, kk =

1 header
2 segment
3 membertrailer
4 filetrailer

mmmm describes the error (hexadecimal):

0001 MAC1, after encryption
0002 MAC2, sequence MAC
0004 MAC3, Mac on macs
0010 missing data
0020 data inserted
0040 data updated
0080 record counter compression
0100 byte counter compression
0200 record counter original data
0400 byte counter original data
0800 chaining on FLAM decryption

Multiple errors are or’ed (e.g. 0180, record and byte
counter both in error).

Security violations are detected during decompression. If
the error situation is well known and acceptable, use
parameter SECUREINFO=IGNORE to ignore the error.

FLAM V4.5 (MVS) 23
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

Positioning into a FLAMFILE and decompressing a
member of a group FLAMFILE implies the usage of
SECUREINFO=MEMBER (else an error code X’00030002
is returned, i.e. a member-MAC sequence error).

Return code

0 The function has been completely executed.

-1 The function has not been executed because it is illegal in
this context (e.g. FLMGET without successful FLMOPN,
FLAM has not been licensed) or because there is
insufficient memory available when a file is opened.

Return codes between 1 and 9 are warnings.

The function has been partially executed. The user must
decide whether the result is right or wrong.

1 A record has been shortened to the length of the record
buffer; the data can be processed in the length specified.

2 The end of the file has been reached while reading; no
data is transferred.

3 A gap has been found in a relative file; the record length is
zero.

4 When a record is converted to fixed format, it is padded
with fill characters.

5 A key is missing when reading from or is invalid when
writing to an index sequential file. The sequential read
position is located on the record with the next-highest key.

When positioning, the position specified does not exist or
the positioning desired is not possible. The current
position is retained.

When deleting, there is no current record.

6 When reading in a group file, a new file is starting; no data
is transferred. The file header can be read if necessary.
The sequential read position is located on the first record
of the new file.

7 Password / cryptokey missing on decompression.
FLAMFILE was created using a password / cryptokey.
Pass it via FLMPWD.

8 not used

9 When compressing with the statistics switched on,
FLAMUP or FLAM reports that the compressed file is
larger than the original file (expansion).

Return codes 10 and higher are errors.

24 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

The function has not been executed or has been aborted.
(Exception: return code 98 from FLAMUP or FLAM)

10 During decompression, the input file has not been
recognized as being a FLAM compressed file. The very
beginning of the file is corrupted to such an extent that the
FLAM syntax cannot be recognized.

Possible causes of this error are:

 The input file is not a compressed file or it was not
compressed using FLAM.

 The very first record has been shortened or data has
been inserted in front of the FLAM compressed file.

This error is often caused by incorrectly set file transfers:

When 8-bit compressed files are transferred, a file transfer
for printable data is used and the characters of the
compressed file are corrupted as a result.

When index sequential compressed files are transferred
from DEC-VMS to a different system (such MVS, BS2000,
etc.), the key length of the compressed file must be
increased by the record and block counters (1, 2 or 4
bytes).

Compressed records are shortened, lengthened or
wrapped while being transferred.

Note: Some of these transformations are now recognized
and automatically corrected by FLAM.

Padding with identical characters is tolerated for all
compression methods.

With 8-bit compressed files, it is possible to wrap the
compressed records as long as no exit is active for the
compressed records (EXD20) during decompression.

11 The format of the FLAMFILE is wrong.

Errors have been detected in the syntax of the
compressed data while decompressing a FLAMFILE. For
example, entire compressed records are missing or
headers are corrupted.

12 A compressed record has been shortened so that part of
the compressed data is missing.

13 The compressed file has been shortened. Entire
compressed records are missing at the end of the file.
This error can arise while creating, copying or transferring
compressed files, if there is not enough disk space
available for the compressed file and therefore to the
compression, copying or file transfer is terminated too

FLAM V4.5 (MVS) 25
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

early. Any other abort of these processes can also result
in an incomplete compressed file.

14 The checksum of a compressed record is wrong. The
compressed file has been corrupted by recoding or some
other form of intervention.

15 FLAM can only process records with a maximum length of
32,764 bytes. The original file contains at least one record
that is longer and can therefore not be compressed.

16 The matrix size must be at least 4 bytes longer than the
longest record length in the original file. The matrix size
should be at least 16 times the record length in order to
achieve good compression results. The file can be
compressed again using a larger matrix buffer.

17 not used

18 not used

19 not used

20 Invalid OPENMODE.

Only index sequential compressed files can be opened
with OPENMODE=INOUT. Sequential compressed files
can only be read (INPUT) or written (OUTPUT).

21 Invalid size of matrix buffer.

During decompression, the matrix buffer required cannot
be requested due to a lack of memory. If it is not possible
to make any more memory available, the original file must
be compressed using a smaller matrix buffer.

Note: As of version 2.5, a matrix buffer of twice the size is
required. If necessary, the compressed file can be
decompressed using version 2.1, so that it can then be
compressed again using a smaller matrix buffer.

22 Invalid compression method.

The compressed file has been created with a more recent
version of FLAM using a compression method that is not
yet supported by this version.

23 Invalid code in FLAMFILE.

The compressed file has been created in a character code
(neither ASCII nor EBCDIC) that is not yet supported by
this version of FLAM.

24 Invalid maximum number of records.

The MAXRECORDS or MAXREC parameter contains a
value greater than 255 or less than 1.

25 Invalid record length.

26 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

The MAXSIZE parameter contains a value less than 80 or
greater than 32,768 for 8-bit compressed data. With CX7,
MAXSIZE must not be greater than 4096.

26 Invalid character code.

The original data uses a character code (neither ASCII nor
EBCDIC) that is not yet supported by this version of
FLAM.

27 not used

28 not used

29 Password missing or invalid (passed by FLMPWD).

30 Input file is empty. The input file exists but does not
contain any data.

31 Input file does not exist.

32 Invalid OPENMODE.

The file cannot be opened with the OPEN mode selected.
For example, a sequential file cannot be opened for
update.

33 Invalid file type.

The file format desired can not or can not yet be
processed by FLAM.

34 Invalid record format.

The record format cannot be processed by FLAM or it is
not valid for the file format specified.

35 Invalid record length.

The record length cannot be processed by FLAM or it is
not valid for the file format and record format specified.

36 Invalid block length.

The block length cannot be processed by FLAM or it is not
valid for the file format and record format specified.

37 Invalid key position.

The key position in an index sequential FLAMFILE is not
1. For an original file, the key position is not valid for the
file format specified.

38 Invalid key length.

The key length cannot be processed by FLAM or it is not
valid for the file format and record format specified.

39 Invalid file name.

FLAM V4.5 (MVS) 27
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

The file name has been specified in an invalid notation for
a file or a library element, or an invalid wildcard
specification has been used for a set of files and library
elements or this wildcard specification cannot be
processed by FLAM.

40 Module or table cannot be loaded.

A user exit or a conversion table cannot be loaded. It may
be that the library is not assigned.

41 Module cannot be called.

A user exit cannot be called.

42 Module or table cannot be loaded.

43 - 49 Abort caused by exit routine.

A user exit has returned the return code 16 or an invalid
return code.

50-51 not used

52 Too many or invalid duplicate keys.

During compression into an index sequential FLAMFILE,
the original file contains duplicate keys, even though
duplicate keys are not allowed in the KEYFLAGS field of
the KEYDESC (key description) when opening the
FLAMFILE. Or the number of duplicate keys in the original
is greater than 255 * MAXREC.

53-56 not used

57 Invalid partially compressed data length.

The compressed data of a matrix has been stored in
several parts with their own length fields. During
decompression, an inconsistency of these length fields is
detected, without an invalid checksum having been found.

This error arises if entire records have been deleted from
a compressed file.

58 not used

59 not used

60 - 78 Errors 60 to 78 describe all of the errors possible in the
compressed data.

These errors identify program errors in FLAM itself and
therefore must not arise during operation.

Since the ability to detect a corruption in a compressed file
via checksums is limited to a certain level of probability, it
is possible that in few cases a decompression error is
reported inappropriately, even though there is a
corruption.

28 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

If a decompression error arises, it should be reported to
the manufacturer (enclose error documentation).

79 not used

80 Syntax error during parameter input.

The syntax of the parameter string is incorrect. If a
number of parameters have been transferred at a time,
the error can be localized by shortening the parameter
string by one parameter each time.

81 Unknown key word.

The parameter string contains an unknown key word or a
parameter value is interpreted as a key word due to a
syntax error.

82 Unknown parameter value.

An invalid value has been specified for a parameter with a
fixed range of allowed values, such as MODE.

83 Parameter value not decimal.

A non-numeric value has been specified for a parameter
whose range of allowed values consists of numbers only.

84 Parameter value too long.

The value specified for a parameter is too long. Numeric
values can contain a maximum of 8 digits and fixed values
may only comprise a maximum of 8 characters, too. The
lengths of parameters which can contain names are
specified in the respective parameter description. Link
names, module names and the names of tables are also
only allowed to be a maximum of 8 characters long. File
names for individual files and those which contain
wildcards can be a maximum of 54 characters long.

85-89 unused

90 Parameter is not allowed at this moment (e.g. CRYPTO-
MODE after function FLMOPF).

91 Unknown parameter

92 Unknown parameter value

93-95 unused

96 No file name found or error when determining file name.
This error can arise during compression in connection with
file name specifications in wildcard syntax or file lists.

During decompression, this error is due to a selection or
conversion rule being specified for the output and the
FLAMFILE not containing a name for the original file.

FLAM V4.5 (MVS) 29
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

97 not used

98 Not all files were processed.

While processing group files not all of the files have been
processed, because errors have been detected when
opening the original files. All of the files that have been
processed, have been processed without error.

111 Called for serial split, but 0 split size.

112 Called for parallel split, but split number < 2.

119 Length error in a split FLAMFILE. Please send any error
protocols.

120 The filename is in error. The number-characters are too
short to generate a new number. E.g. after 9, the number
10 should be created but the number-character has one
byte only.

121 On decompression, one fragment of a split FLAMFILE is

missing.

122 On decompression, a fragment of a serial split FLAMFILE
is not in ascending order.

123 A fragment of a split FLAMFILE does not belong to the
actual split.

124 A FLAMFILE has been split parallel into more fragments
than the actual version is able to read.

125 A formal error in the last record of the actual fragment of

the split FLAMFILE.

126-129 unused

130 Security violation. The FLAMFILE has been changed
(e.g. update, concatenation).

If acceptable, use SECUREINFO=IGNORE on decom-
pression.

131 Security violation. Missing records or complete member in

a group FLAMFILE.

If acceptable, use SECUREINFO=IGNORE on
decompression.

132 Security violation. A new member has been inserted in a

group FLAMFILE.

If acceptable, use SECUREINFO=IGNORE on
decompression.

133 Security violation. The record sequence has been
changed.

30 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 8 Messages

If acceptable, use SECUREINFO=IGNORE on decom-
pression.

134 Unexpected security information in a standard FLAMFILE.

You cannot ignore this error situation. Perhaps you have
concatenated a ‘normal’ and a ‘secure’ FLAMFILE?

135.998 unused

999 as –1

> 65535 marked errors (see the beginning of the chapter)

FLAM V4.5 (MVS) 31
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Messages Chapter 8

8.4 Condition codes

FLAM sets the following condition codes for executive
control:

Condition codes

0 Error-free execution

4 Not all input/output files have been processed during the
processing of group files

8 Simple errors (such as parameter errors) have been
detected

12 Usually, DMS errors are present

16 Serious error during compression/decompression

80 The compression ratio was worse than the specified limit
(see CLIMIT parameter)

88 The file assigned is not a FLAMFILE

Processing has been executed correctly only when
condition code 0 or 80 is set. In all other cases, it may be
that either a corrupt compressed file has been created or
no compressed file at all. We recommend that this file is
recatalogued, so that it is not used for further processing.

If a condition code greater than 0 is returned, FLAM has
already displayed an appropriate error message.

If errors with condition code 16 are reported, there may be
an error in FLAM.

32 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Chapter 9:

The FLAM user interface

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

Content

9. The FLAM user interface 3

9.1 Summary 3

9.2 FLAM panels 3

9.2.1 Example for compression 9

9.2.2 Example for decompression 13

9.2.3 Information about a FLAMFILE 15

9.3 FLCOMP 18

9.4 FLDECO 19

9.5 FLDIR 20

9.6 FLDISP 21

9.7 FLEDIT 23

9.8 FLTOC 24

9.8.1 Browse a FLAMFILE member 25

9.8.2 Information about a FLAMFILE member 27

9.8.3 Decompress a FLAMFILE member 28

9.9 FLCKV 30

FLAM V4.5 (MVS) 1
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9. The FLAM user interface

9.1 Summary

Everyday usage of FLAM is greatly simplified under
TSO/ISPF by calling procedures and panels.

CLIST procedures enable FLAM to be called directly when
a file list is available (panel 3.4 in ISPF). Thus, directory
contents of a FLAMFILE can be displayed, or files can be
compressed, decompressed, viewed or edited.

FLAM can also be incorporated as a menu item in a
selection panel (e.g. ISRUTIL).

The panels, CLIST procedures and messages belonging
to the FLAM user interface are delivered in PO libraries in
legible form. This allows the user to modify them and
adapt them to their specific requirements.

Please keep in mind that maintenance and warranty only
applies to the delivered version. Note also that
modifications and adaptations made by the customer must
be applied again by the customer himself in case of
version changes.

9.2 FLAM panels

The term FLAM panels refers to the user interface that
can be linked into a selection panel.

The task of these panels is the compression and
decompression of files for execution in dialog (TSO) or in
batch.

No knowledge of JCL is necessary. All the necessary
commands are generated automatically.

All panels provide help information when pressing the PF1
key. You can find general information as well as detailed
explanations following error messages. All messages and
help texts are written in English.

For execution in batch, control is transferred to JES. In
consequence the function 3.8 can be used from ISPF or,
e.g. SDSF, to control the batch job.

After execution under TSO, control is passed
automatically to the result list of FLAM.

FLAM V4.5 (MVS) 3
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

Start of FLAM panels

To start the FLAM user interface please enter under ISPF (e.g. in the command line):

----------------------- ISPF/PDF PRIMARY OPTION MENU -----------------
 OPTION ===> tso exec pref(flam)

 0 ISPF PARMS - Specify terminal and user parameters
 1 BROWSE - Display source data or output listings
 2 EDIT - Create or change source data
 3 UTILITIES - Perform utility functions
 .
 .
 .

With 'pref' as file name prefix of the FLAM CLIST library (according TSO conventions).

Then the FLAM user interface panel will be displayed.

4 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

We recommend to modify an existing ISPF panel (e.g. ISRUTIL) instead. In the
following example the changes are printed in bold characters:

 %------------------------- UTILITY SELECTION MENU ------------------
 %OPTION ===_ZCMD
 %
 % 1 +LIBRARY - Compress or print data set. Print index listing.
 + Print, rename, delete, or browse members
 % 2 +DATASET - Allocate, rename, delete, catalog, uncatalog, or
 + display information of an entire data set
 % 3 +MOVE/COPY - Move, copy, or promote members or data sets
 % 4 +DSLIST - Print or display (to process) list of data set
 + Print or display VTOC information
 % 5 +RESET - Reset statistics for members of ISPF library
 % 6 +HARDCOPY - Initiate hardcopy output
 % 8 +OUTLIST - Display, delete, or print held job output
 % 9 +COMMANDS - Create/change an application command table
 % 10 +CONVERT - Convert old format menus/messages to new format
 % 11 +FORMAT - Format definition for formatted data Edit/Browse
 % 12 +SUPERC - Compare data sets (Standard dialog)
 % 13 +SUPERCE - Compare data sets (Extended dialog)
 % 14 +SEARCH-FOR - Search data sets for strings of data
 % 15 +FLAM - Data Compression Utility
)INIT
 .HELP = ISR30000
)PROC
 &ZSEL = TRANS(TRUNC (&ZCMD,'.')
 1,'PGM(ISRUDA) PARM(ISRUDA1)'
 2,'PGM(ISRUDA) PARM(ISRUDA2)'
 3,'PGM(ISRUMC)'
 4,'PGM(ISRUDL) PARM(ISRUDLP)'
 5,'PGM(ISRURS)'
 6,'PGM(ISRUHC)'
 8,'PGM(ISRUOLP)'
 9,'PANEL(ISPUCMA)'
 10,'PGM(ISRQCM) PARM(ISRQCMP)'
 11,'PGM(ISRFMT)'
 12,'PGM(ISRSSM)'
 13,'PGM(ISRSEPRM) NOCHECK'
 14,'PGM(ISRSFM)'
 15,'CMD(EXEC pref.CLIST(FLAM))'
 ' ',' '
 *,'?')
 &ZTRAIL = .TRAIL
)END

If this modified panel is concatenated by using a transparent file (DD name ISPPLIB),
the FLAM start menu can be called with function 3.15 !

FLAM V4.5 (MVS) 5
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

FLAM start panel

After the TSO EXEC command or 3.15 was entered in the command line the FLAM
start panel will be displayed:

 ------------------------------- F L A M -------------------------
 OPTION ===>

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===>

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===>

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)
 DATA SET NAME === *

 FLAM Parameter: ===>
 ===>

 Submit: F (F/B Foreground or Batch)
 --

By specifying an option the function is chosen:

- compression (C),

- decompression (D),

- display of informations from the FLAMFILE (I),

- jump to another panel for JCL generation (O).

File names can be entered according to TSO conventions. If a file name is not enclosed
in quotes, a file from the own identification is assumed. Files from foreign identifications
(Userid) must be specified with the full file name enclosed in quotes. For execution in
batch the file name is prefixed with the identification if the quotes are missing.

E.g., while running under identification FLAM, a data set name of FLAM.DAT.SMF is
generated from the input DAT.SMF for the execution in batch. But if 'SYS2.DAT.SMF' is
entered, the generated data set name will be SYS2.DAT.SMF.

If no file name is entered, a DUMMY statement will be generated. This means that no
file is read or created by FLAM. This can be useful to evaluate compression ratios, test
and debug jobs, or to use user exits with own I/O routines.

6 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

The file name is checked for syntax. If the file is not catalogued, the allocation panel will
be called to allow to catalogue and allocate the file; an error message is given
otherwise.

The FLAM protocol is principally stored into a file if no other instructions are given by
generation or via parameter (see parameter MSGDISP).

Also for this file a file name can be specified. If '*' (default) is specified, a temporary file
will be allocated and released after execution. For batch the statement SYSOUT=* will
be generated - so the protocol will appear in the JCL result list.

With the specification of 'Reuse existing Data Set : N '

an overwrite of an existing file can be inhibited. An error message is given instead. This
applies also for the protocol file !

Up to 100 characters can be entered for FLAM parameters in total. For execution only
one string is generated. So a comma must be given if the parameters are continued on
the second input line. The parameters are not checked by the panel. They are simply
passed to FLAM and checked by FLAM during execution.

Execution may take place under TSO (foreground) or as a batch process. The
necessary JCL is generated automatically.

After execution has finished control is passed automatically to the FLAM protocol file
under TSO. All commands of the ISPF browse mode are allowed (like positioning, etc.)
Function key PF3 will terminate the display and will give control back to the FLAM start
menu.

FLAM V4.5 (MVS) 7
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

FLAM options:

When option ' o ' is entered default values for the JCL generation shall be specified.
Control is given to the next panel:

 ------------------------------ FLAM - Options -----------------------
 FLAM Load Library (Data Set Name)
 === FLAMV30A.LOAD
 New Data Set Defaults FLAMFILE Original Data Set

 Record Format ===> FB (F,FB,V,VB)
 Record Length ===> 2048 (80 to 32760 Byte)
 Block Size ===> 26624 (80 to 32760 Byte)
 Space Unit ===> TRKS (BLKS, TRKS, or CYLS) ===> TRKS
 Primary Quant. ===> 10 (in above units) ===> 20
 Secondary Qu. ===> 5 (in above units) ===> 4
 Volume ===> ===>
 Unit ===> SYSDA ===> SYSDA

 JOB Statement Information (required for batch-processing only)
 ===> //FLAM30A JOB 7021000F,'LIMES-496172/59190',
 ===> // CLASS=A,MSGLEVEL=2,MSGCLASS=X,
 ===> // NOTIFY=FLAM30

 Press ENTER for return, PF3 or PF4 will cancel.

For demonstration purposes the panel is already supplied with values. The values will
be used for each FLAM execution. So the user doesn't have to fill in the same values
again and again.

The specification of a FLAM load module library is mandatory. Without such a library no
execution is possible. Usually the library name has been determined during installation,
but it is always possible to change this name to support version changes or test
environments.

By default the FLAMFILE is created as a sequential PS file. Here it is possible to define
a certain file format, file size and storage medium as default values.

Because the output file during decompression can be of any kind, only default values
for size and storage medium are required.

All these values can be changed during execution. Here only the default values are
defined.

The JOB card is only used for execution in batch. If no default JOB card is provided,
each batch JCL generation will ask for the job card specification.

After pressing the ENTER key, control will be given back to the FLAM start menu. All
inputs are stored into the ISPF PROFILE file and will be available for future calls of
FLAM panels.

The function keys PF3 and PF4 will cancel the process - the inputs are discarded and
not stored.

8 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.2.1 Example for compression:

For compression 'c' is specified as option:

 ------------------------------- F L A M -------------------------
 OPTION ===> c

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===> dat.fb

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===> dat.cmp

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)
 DATA SET NAME ===> *

 FLAM Parameter:
 ===> mode=vr8
 ===>

 Submit: F (F/B Foreground or Batch)

The file DAT.FB of the users identification shall be compressed into file DAT.CMP of
the users identification. Since this file shall not exist already, overwrite is inhibited (as a
protection for mistakes during entry). The compression shall use compression mode
VR8.

After the ENTER key is pressed, the file name is checked and the existence of the file
is tested.

FLAM V4.5 (MVS) 9
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

Because the compression file DAT.CMP is a new file and not yet allocated, control is
passed to the FLAM allocation panel:

 --------------------- F L A M Data Set Specification --------------

 Data Set DAT.CMP

 Special attributes or allocation for new FLAMFILE
 For standard processing press <ENTER> without any input.

 Organization ===> PS (PS/PO/ESDS/KSDS/RRDS/LDS)
 Record Format ===> FB (F/FB/V/VB, with S,A,M, or /U)
 Record Length ===> 2048 (up to 32760 Byte, avg. max for VSAM
 Block Size ===> 26624 (up to 32760 Byte, CISZ for VSAM
 Key Position ===> (VSAM KSDS
 Key Length ===> (up to 255) (only
 No.Dir.Blocks ===> (PO Data Set only)
 Space Unit ===> TRKS (BLKS, TRKS, CYLS, or RECS)
 Primary Quantity ===> 10 (in above units)
 Secondary Quant. ===> 5 (in above units)
 Volume Serial ===>
 Generic Unit ===> SYSDA

This panel contains already the default values as specified in the FLAM option panel.
They may be modified if required. E.g., a VSAM file could be created instead.

In this example we want to create a compressed file for transmission to a PC with
IND$FILE. We change the record and block sizes to appropriate values:

 --------------------- F L A M Data Set Specification -------------

 Data Set DAT.CMP

 Special attributes or allocation for new FLAMFILE
 For standard processing press <ENTER> without any input.

 Organization ===> PS (PS/PO/ESDS/KSDS/RRDS/LDS)
 Record Format ===> FB (F/FB/V/VB, with S,A,M, or /U)
 Record Length ===> 128 (up to 32760 Byte, avg. max for VSAM
 Block Size ===> 1280 (up to 32760 Byte, CISZ for VSAM)
 Key Position ===> (VSAM KSDS
 Key Length ===> (up to 255) (ONLY
 No.Dir.Blocks ===> (PO Data Set only)
 Space Unit ===> TRKS (BLKS, TRKS, CYLS, or RECS)
 Primary Quantity ===> 1 (in above units)
 Secondary Quant. ===> 1 (in above units)
 Volume Serial ===>
 Generic Unit ===> SYSDA

After ENTER is pressed, processing starts.

10 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

Depending on file size and CPU workload the FLAM processing can take a while.
Therefore the following panel is displayed.

 ------------------------------ F L A M --------------------------
 OPTION ===> C

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===> DAT.FB

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===> DAT.CMP

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)
 DATA SET NAME ===> *

 F L A M is working now

 Submit: F (F/B Foreground or Batch)

After compression has finished control is automatically passed to the result display. All
commands allowed in the BROWSE mode can be used, like positioning, searching, etc.

FLAM V4.5 (MVS) 11
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

 BROWSE – FLAM30.FLAM.TEMPLIST --------------------- LINE 00000000 COL
 COMMAND ===>
 ********************************* TOP OF DATA ***********************
 FLM0448 COPYRIGHT (C) 1989-1999 BY LIMES DATENTECHNIK GMBH TEST 2000182
 FLM0428 RECEIVED: C,MODE=VR8
 FLM0400 FLAM COMPRESSION VERSION 3.0A00 ACTIVE
 FLM0410 DATA SET NAME : FLAM30.DAT.FB
 FLM0415 USED PARAMETER: ACCESS : LOG
 FLM0415 USED PARAMETER: IDSORG : SEQUENT
 FLM0415 USED PARAMETER: IRECFORM : FIXBLK
 FLM0415 USED PARAMETER: IRECSIZE : 80
 FLM0415 USED PARAMETER: IBLKSIZE : 3120
 FLM0410 DATA SET NAME : FLAM30.DAT.CMP
 FLM0415 USED PARAMETER: MODE : VR8
 FLM0415 USED PARAMETER: MAXBUFF : 32768
 FLM0415 USED PARAMETER: MAXREC : 255
 FLM0415 USED PARAMETER: MAXSIZE : 128
 FLM0415 USED PARAMETER: DSORG : SEQUENT
 FLM0415 USED PARAMETER: RECFORM : FIXBLK
 FLM0415 USED PARAMETER: BLKSIZE : 1280
 FLM0408 CPU - TIME: 0.0390
 FLM0409 RUN - TIME: 0.3325
 FLM0406 INPUT RECORDS/BYTES: 27 / 2,160
 FLM0407 OUTPUT RECORDS/BYTES: 9 / 1,152
 FLM0416 COMPRESSION REDUCTION IN PERCENT: 46.67
 FLM0440 FLAM COMPRESSION NORMAL END
 ******************************** BOTTOM OF DATA *****************

When PF3 is pressed control is given back to the start menu.

12 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.2.2 Example for decompression

Here no output file is specified, the according input field remains empty. This will cause
a complete decompression, but without the creation of an output file.

--------------------------------- F L A M ------------------------
 OPTION ===> d

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===>

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===> DAT.CMP

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)
 DATA SET NAME ===> *

 FLAM Parameter:
 ===>
 ===>
 Submit: F (F/B Foreground or Batch)

FLAM V4.5 (MVS) 13
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

The result:

 BROWSE – FLAM30.FLAM.TEMPLIST --------------------- LINE 00000000 COL
 COMMAND ===> SCROLL
 ********************************* TOP OF DATA **************************
 FLM0448 COPYRIGHT (C) 1989-1999 BY LIMES DATENTECHNIK GMBH TEST 2000182
 FLM0428 RECEIVED: D,
 FLM0450 FLAM DECOMPRESSION VERSION 3.0A00 ACTIVE
 FLM0460 DATA SET NAME : FLAM30.DAT.CMP
 FLM0465 USED PARAMETER: MODE : VR8
 FLM0465 USED PARAMETER: VERSION : 200
 FLM0465 USED PARAMETER: MAXBUFF : 32768
 FLM0465 USED PARAMETER: CODE : EBCDIC
 FLM0465 USED PARAMETER: DSORG : SEQUENT
 FLM0465 USED PARAMETER: RECFORM : FIXBLK
 FLM0465 USED PARAMETER: RECSIZE : 128
 FLM0465 USED PARAMETER: BLKSIZE : 1280
 FLM0482 OLD ODSN : FLAM30.DAT.FB
 FLM0482 OLD ODSORG : SEQUENT
 FLM0482 OLD ORECFORM : FIXBLK
 FLM0482 OLD ORECSIZE : 80
 FLM0482 OLD OBLKSIZE : 3120
 FLM0469 COMPRESSED FILE FLAM-ID: 0101
 FLM0460 DATA SET NAME : NULLFILE
 FLM0465 USED PARAMETER: ACCESS : LOG
 FLM0458 CPU - TIME: 0.0254
 FLM0459 RUN - TIME: 0.0778
 FLM0456 INPUT RECORDS/BYTES: 9 / 1,152
 FLM0457 OUTPUT RECORDS/BYTES: 27 / 2,160
 FLM0490 FLAM DECOMPRESSION NORMAL END
 ******************************** BOTTOM OF DATA ******************

14 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.2.3 Information about a FLAMFILE

The information of the compression file can be shown in 2 different ways:

The instruction SHOW=DIR for decompression

The protocol is to be stored into EXAMPLE.LIST:

 ------------------------------- F L A M -------------------------
 OPTION ===> d

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===> DAT.CMP

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)

 DATA SET NAME ===> example.list

 FLAM Parameter:
 ===> show=dir
 ===>
 Submit: F (F/B Foreground or Batch)
 --

The protocol file is generated by default (in TSO on the disc assigned by the system
administrator, in batch on the specified unit of the FLAMFILE in the FLAM option menu
or on SYSDA.

FLAM V4.5 (MVS) 15
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

And the result:

 BROWSE – FLAM30.EXAMPLE.LIST ---------------------- LINE 00000000
 COMMAND ===>
 ********************************* TOP OF DATA ************************
 FLM0448 COPYRIGHT (C) 1989-1999 BY LIMES DATENTECHNIK GMBH TEST 2000182
 FLM0428 RECEIVED: D,SHOW=DIR
 FLM0450 FLAMD DECOMPRESSION VERSION 3.0A00 ACTIVE
 FLM0460 DATA SET NAME : FLAM30.DAT.CMP
 FLM0465 USED PARAMETER: MODE : VR8
 FLM0465 USED PARAMETER: VERSION : 200
 FLM0465 USED PARAMETER: MAXBUFF : 32768
 FLM0465 USED PARAMETER: CODE : EBCDIC
 FLM0465 USED PARAMETER: DSORG : SEQUENT
 FLM0465 USED PARAMETER: RECFORM : FIXBLK
 FLM0465 USED PARAMETER: RECSIZE : 128
 FLM0465 USED PARAMETER: BLKSIZE : 1280
 FLM0482 OLD ODSN : FLAM30.DAT.FB
 FLM0482 OLD ODSORG : SEQUENT
 FLM0482 OLD ORECFORM: FIXBLK
 FLM0482 OLD ORECSIZE: 80
 FLM0482 OLD OBLKSIZE: 3120
 FLM0469 COMPRESSED FILE FLAM-ID: 0101
 FLM0458 CPU - TIME: 0.0174
 FLM0459 RUN - TIME: 0.0375
 FLM0456 INPUT RECORDS/BYTES: 1 / 128
 FLM0457 OUTPUT RECORDS/BYTES: 0 / 0
 FLM0490 FLAM DECOMPRESSION NORMAL END

A decompression was not performed (output records = 0). Only FLAMFILE header
information is displayed.

16 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

By input of option 'i'

------------------------------- F L A M -------------------------
 OPTION ===> i

 C - Compress data set or member I - FLAMFILE-info
 D - Decompress data set or member O - Processing options

 Specify original data set or member (blank for DUMMY):
 DATA SET NAME ===>

 Specify FLAMFILE data set or member (blank for DUMMY):
 DATA SET NAME ===> DATASET.CMP

 Reuse existing data sets: N (Y/N yes/no)

 Specify Listing (* for temporary, blank for none)

 DATA SET NAME ===>

 FLAM Parameter:
 ===>
 ===>
 Submit: F (F/B Foreground or Batch)
 --

the content of FLAMFILE DATASET.CMP analogously ISPF 3.4 will be displayed:

FLAMFILE TOC DATASET.CMP Row 1 of 2170
 MODE VR8 MAXBUFFER 64 FLAMCODE EBCD
 Original Data Set Name Dsorg Recfm Lrecl Blksi Space
--
-
 FLAMT.AD0001NP.LIST SEQ FBM 133 3059 300
K
 FLAMT.AD0001NP.CX8 SEQ FB 80 23440 50
K
 FLAMT.AD0191NP.LIST SEQ FBM 133 3059 500
K
 FLAMT.AD0192NP.LIST SEQ FBM 133 3059 250
K
 FLAMT.EXD4TO3.LIST SEQ FBM 133 3059 150
K
 FLAMT.EXK1NUL.LIST SEQ FBM 133 3059 50
K
 FLAMT.EXK3TO4.LIST SEQ F 133 133 350
K
 FLAMT.FLAM.CMP SEQ FB 512 23552 12800
K
 FLAMT.FLAMDIR.LIST SEQ FBM 133 3059 200
K
 FLAMT.FLAMFLN.LIST SEQ F 133 133 3150
K
 FLAMT.FLAMG001.LIST SEQ FBM 133 3059 1250
K

FLAM V4.5 (MVS) 17
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

 FLAMT.FLAMG002.LIST SEQ F 133 133 500
K
 FLAMT.FLAMHELP.LIST SEQ F 133 133 550
K
 FLAMT.FLAMNUC.LIST SEQ F 133 133 11300
K
 FLAMT.FLAMTADC.LIST SEQ FBM 133 3059 100
K
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

18 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.3 FLCOMP

This CLIST procedure is intended for use in panel 3.4 in ISPF (file list), but it can also
be called directly. In the latter case, the file name is requested.

To compress the file specified in the line, FLCOMP branches to the FLAM panel
routine. In this routine, the option and file name are already set in the panel and the
user can enter further specifications for compression (see 9.2).

The command is entered in the same line as the file name to be compressed:

FLCOMP / or %FLCOMP /

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 15 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE
 --
 FLCOMP / USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS
 USER.DAT.KSDS.DATA
 USER.DAT.KSDS.INDEX

FLAM V4.5 (MVS) 19
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

9.4 FLDECO

This CLIST procedure is intended for use in panel 3.4 in ISPF (file list), but it can also
be called directly. In the latter case, the file name is requested.

To decompress the file specified in the line, FLDECO branches to the FLAM panel
routine. In this routine, the option and file name are already set in the panel and the
user can enter further specifications for decompression (see 9.2).

The command is entered in the same line as the file name to be decompressed:

FLDECO / or %FLDECO /

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 14 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 FLDECO / USER.DAT.CMP 1 100 1 3390
 USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS
 USER.DAT.KSDS.DATA
 USER.DAT.KSDS.INDEX

20 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.5 FLDIR

This CLIST procedure is intended for use in panel 3.4 in ISPF (file list), but it can also
be called directly. In the latter case, the file name is requested.

FLDIR displays the FLAMFILE information about the file specified in the line (same as
option I in the FLAM panels). The file is not decompressed. If no FLAMFILE exists, an
appropriate message is written to the result list of FLAM.

The command is entered in the same line as the file name to get information about:

FLDIR / or %FLDIR /

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 14 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 %FLDIR / USER.DAT.CMP 1 100 1 3390
 USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS
 USER.DAT.KSDS.DATA
 USER.DAT.KSDS.INDEX

FLAM V4.5 (MVS) 21
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

9.6 FLDISP

This CLIST procedure is intended for use in panel 3.4 in ISPF (file list), but it can also
be called directly. In the latter case, the file name is requested.

FLDISP displays the contents of the file specified in the line. If a FLAMFILE exists, it is
decompressed into a temporary file and this file is displayed. An uncompressed file is
displayed directly, i.e. the command can be used for all files that can be displayed
(same as function 1 (BROWSE) in ISPF).

The call can be supplemented with FLAM parameters for decompression. The
command is entered in the same line as the file name to be displayed:

FLDISP / or %FLDISP /

or with parameters:

FLDISP / PARM('FLAM-parameter')

Without parameters, a sequential (PS) file is created by default. If a PO library has
been compressed, a PO library can be created again by specifying the parameter 'PO'.

FLDISP / PO PARM('FLAM parameter')

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 15 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 FLDISP / USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS.CMP 0 ? 0 3390
 USER.DAT.KSDS.CMP.DTA 4 ? 1 3390
 USER.DAT.KSDS.CMP.IDX 1 ? 1 3390

22 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

FLDISP can also be used to display a VSAM FLAMFILE using the BROWSE function.
Since the file is decompressed into a temporary (PS) file, it is also possible to include
parameters for FLAM if necessary.

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 15 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 %FLDISP / PARM('ORECS=512,TRUNC=YES') 0 ? 0 3390
 USER.DAT.KSDS.CMP.DTA 4 ? 1 3390
 USER.DAT.KSDS.CMP.IDX 1 ? 1 3390

FLAM V4.5 (MVS) 23
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

9.7 FLEDIT

This CLIST procedure is intended for use in panel 3.4 in ISPF (file list), but it can also
be called directly. In the latter case, the file name is requested.

FLEDIT displays the contents of the file specified in the line and allows modifications to
be made. If a FLAMFILE exists, it is decompressed into a temporary file and this file is
then edited. An uncompressed file is edited directly, i.e. the command can be used for
all files that can be edited (same as function 2 (EDIT) in ISPF).

If editing is terminated by means of 'CANCEL', the modifications made are not
incorporated and the file selected is left as it was (same as EDIT in ISPF).

The call can be supplemented with FLAM parameters for compression and
decompression.

The command is entered in the same line as the file name to be edited:

FLEDIT / or %FLEDIT /

or with parameters:

FLEDIT / PARM('FLAM parameter')

Note: If the decompressed (temporary) file is compressed again after having been
edited, the original file header information is lost! The values of this temporary file are
then used for the file header.

Without parameters, a sequential (PS) file is created by default. If a PO library has
been compressed, a PO library can be created again by specifying the parameter 'PO'.

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 14 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 FLEDIT / USER.DAT.CMP 1 100 1 3390
 USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS
 USER.DAT.KSDS.DATA
 USER.DAT.KSDS.INDEX

24 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.8 FLTOC

This CLIST procedure is meant for the use in the panel 3.4 in ISPF (file list), will also be
activated internally by option 'I' in the FLAM panel.

FLTOC displays the content of a collecitve FLAMFILE analogue the output of ISPF 3.4
and allows direct display of FLAMFILE members and the decompression.

The input of the command is made in the line with the wanted file name:

FLTOC / or %FLTOC /

Example:

 DSLIST - DATA SETS BEGINNING WITH USER ------------- ROW 14 OF 134
 COMMAND ===> SCROLL === PAGE

 COMMAND NAME TRACKS %USED XT DEVICE

 FLTOC / USER.DAT.CMP 45 100 1 3390
 USER.DAT.F 1 100 1 3390
 USER.DAT.FB 1 100 1 3390
 USER.DAT.KSDS
 USER.DAT.KSDS.DATA
 USER.DAT.KSDS.INDEX

Analogue option 'I' of the FLAM panel this will be displayed:

FLAMFILE TOC DAT.CMP Row 1 of 2170
 MODE VR8 MAXBUFFER 64 FLAMCODE EBCD
 Original Data Set Name Dsorg Recfm Lrecl Blksi Space
--
-
 FLAMT.AD0001NP.LIST SEQ FBM 133 3059 300
K
 FLAMT.AD0001NP.CX8 SEQ FB 80 23440 50
K
 FLAMT.AD0191NP.LIST SEQ FBM 133 3059 500
K
 FLAMT.AD0192NP.LIST SEQ FBM 133 3059 250
K
 FLAMT.EXD4TO3.LIST SEQ FBM 133 3059 150
K
 FLAMT.EXK1NUL.LIST SEQ FBM 133 3059 50
K
 FLAMT.EXK3TO4.LIST SEQ F 133 133 350
K
 FLAMT.FLAM.CMP SEQ FB 512 23552 12800
K
 FLAMT.FLAMDIR.LIST SEQ FBM 133 3059 200
K
 FLAMT.FLAMFLN.LIST SEQ F 133 133 3150
K
 FLAMT.FLAMG001.LIST SEQ FBM 133 3059 1250
K

FLAM V4.5 (MVS) 25
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

 FLAMT.FLAMG002.LIST SEQ F 133 133 500
K
 FLAMT.FLAMHELP.LIST SEQ F 133 133 550
K
 FLAMT.FLAMNUC.LIST SEQ F 133 133 11300
K
 FLAMT.FLAMTADC.LIST SEQ FBM 133 3059 100
K
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

26 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.8.1 Browse a FLAMFILE member

FLAMFILE TOC DAT.CMP Row 1 of 2170
 MODE VR8 MAXBUFFER 64 FLAMCODE EBCD
 Original Data Set Name Dsorg Recfm Lrecl Blksi Space
--
-
 FLAMT.AD0001NP.LIST SEQ FBM 133 3059 300
K
 FLAMT.AD0001NP.CX8 SEQ FB 80 23440 50
K
 FLAMT.AD0191NP.LIST SEQ FBM 133 3059 500
K
 FLAMT.AD0192NP.LIST SEQ FBM 133 3059 250
K
 .
 .
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

Input of 'B' in line FLAMT.FLAMTS01.DAT:

 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
B FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

causes a decompression of this member and the display by means of the ISPF browse
function:

Browse Member of FLAMFILE DAT.CMP
 originally compressed on MVS
 FLAMT.FLAMTS01.DAT Lines 00000000 Col 001
080
--
-
******************************** Top of Data

19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
.
.
19980202L000050010060 000021112850 0123456780000001 0000001

FLAM V4.5 (MVS) 27
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
19980202L000050010060 000021112850 0123456780000001 0000001
 Command ===> Scroll ===> CSR

By input of 'BA' the files will be converted from ASCII to EBCDIC before displayed
(according to the internal translation table A/E).

By input of ‚BP’ you can enter additional parameter for decompressing.

 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
BP FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

Will lead to:

 Old system : MVS
 Old data set: FLAMT.FLAMTS01.DAT1

 Parameter for decompression to browse this file

Cryptokey (to decrypt the FLAMFILE)
:
SecureInfo : MEMBER (Ignore/Member/Yes)
 use MEMBER for an AES encrypted FLAMFILE
Translation : (A/E, E/A, module name of transl. table)

You have to enter the key for decryption, if the FLAMFILE has been encrypted during
compression. Using AES-encryption, SECUREINFO should be set to MEMBER to
verify the security information for the member only.

28 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.8.2 Information about a FLAMFILE member

FLAMFILE TOC DAT.CMP Row 1 of 2170
 MODE VR8 MAXBUFFER 64 FLAMCODE EBCD
 Original Data Set Name Dsorg Recfm Lrecl Blksi Space
--
-
 FLAMT.AD0001NP.LIST SEQ FBM 133 3059 300
K
 FLAMT.AD0001NP.CX8 SEQ FB 80 23440 50
K
 FLAMT.AD0191NP.LIST SEQ FBM 133 3059 500
K
 FLAMT.AD0192NP.LIST SEQ FBM 133 3059 250
K
 FLAMT.EXD4TO3.LIST SEQ FBM 133 3059 150
K
 .
 .
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

Input of 'I' in line FLAMT.AD0001NP.CX8:

 FLAMT.AD0001NP.LIST SEQ FBM 133 3059 300
K
I FLAMT.AD0001NP.CX8 SEQ FB 80 23440 50
K
 FLAMT.AD0191NP.LIST SEQ FBM 133 3059 500
K

will give out more information about this FLAMFILE member:

FLAMFILE TOC DAT.CMP Row 1 of 2170
 +----------------- FLAMFILE INFORMATION -----------------+
 ¦ ¦ recl Blksi Space
- ¦ FLAMT.AD0001NP.CX8 ¦

 ¦ ¦ 33 3059 300
K
I ¦ Data Set was compressed on MVS ¦ 0 23440 50
K
 ¦ ¦ 33 3059 500
K
 ¦ Organization ===> PS ¦ 33 3059 250
K

FLAM V4.5 (MVS) 29
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

 ¦ Record Format ===> FB ¦ 33 3059 150
K
 ¦ Record Length ===> 80 ¦ 33 3059 50
K
 ¦ Block Size ===> 23440 ¦ 33 133 350
K
 ¦ Rel. Key Pos. ===> ¦ 33 133 12800
K
 ¦ Key Length ===> ¦ 33 133 3150
K
 ¦ No.Dir.Blocks ===> ¦ 33 133 1250
K
 ¦ Space Amount ===> 50 KB 1 TRKS ¦ 33 133 500
K
 ¦ ¦ 33 3059 550
K
 +--+ 33 133 11300
K
 FLAMT.FLAMTADC.LIST SEQ FBM 133 3059 100
K
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

COMMAND ===>

30 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

9.8.3 Decompression of a FLAMFILE member

Input of 'S' in line FLAMT.DAT.CMP causes a decompression of this member. If the file
is already catalogued another display will ask you to allow an overwriting:

FLAMFILE TOC DAT.CMP Row 1 of 2170
 +------------------------ FLAM DECOMPRESSION -------------------------+
 ¦ ¦ ace
- ¦ ¦

 ¦ 'FLAMT.FLAM.CMP' ¦ 300
K
 ¦ ¦ 50
K
 ¦ is already cataloged. ¦ 500
K
 ¦ ¦ 250
K
 ¦ ¦ 150
K
 ¦ ¦ 50
K
 ¦ Overwrite ? ===> N (Y/N) ¦ 350
K
S +---+ 800
K
 FLAMT.FLAMDIR.LIST SEQ FBM 133 3059 200
K
 FLAMT.FLAMFLN.LIST SEQ F 133 133 3150
K
 FLAMT.FLAMG001.LIST SEQ FBM 133 3059 1250
K
 FLAMT.FLAMG002.LIST SEQ F 133 133 500
K
 FLAMT.FLAMHELP.LIST SEQ F 133 133 550
K
 FLAMT.FLAMNUC.LIST SEQ F 133 133 11300
K
 FLAMT.FLAMTADC.LIST SEQ FBM 133 3059 100
K
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K
 FLAMT.FLAMTS02.DAT2 SEQ VB 260 23440 28500
K

If the question above is answered with 'N' or the file was not catalogued the following
display is shown:

FLAMFILE TOC DAT.CMP Row 1 of 2170
 +------------------------ FLAM DECOMPRESSION -------------------------+
 ¦ ¦ ace
FLAM V4.5 (MVS) 31
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

- ¦ Old system : MVS ¦

 ¦ Old data set: FLAMT.FLAM.CMP ¦ 300
K
 ¦ ¦ 50
K
 ¦ New data set: 'FLAMT.FLAM.CMP' ¦ 500
K
 ¦ ¦ 250
K
 ¦ Reuse existing data set: N (Y/N) ¦ 150
K
 ¦ ¦ 50
K
 ¦ Record truncation: N (Y/N) allowed / not allowed) ¦ 350
K
S ¦ Translation : (A/E, module name) ¦ 800
K
 ¦ SecureInfo : MEMBER (Ignore/Member/Yes) ¦ 200
K
 ¦ CryptoKey ¦ 150
K
 ¦ : ¦ 250
K
 ¦ Submit: F (F/B, Foreground or Batch) ¦ 500
K
 ¦ ¦ 550
K
 ¦ Command ===> ¦ 300
K
 +---+ 100
K
 FLAMT.FLAMTS.LIST SEQ F 133 133 400
K
 FLAMT.FLAMTS01.DAT1 SEQ V 260 264 350
K

You have to enter the key for decryption, if the FLAMFILE has been encrypted during
compression. Using AES-encryption, SECUREINFO should be set to MEMBER to
verify the security information for the member only.

Above a new file name FLAM3.NEWDAT.LIST was entered, in the next display new
attributes for this file can be allocated:

FLAMFILE TOC DAT.CMP Row 1 of 2170
 +------------------------ FLAM DECOMPRESSION -------------------------+
 ¦ Data Set 'FLAM3.NEWDAT.LIST' ¦ ace
- ¦ ¦

 ¦ DATA SET WAS COMPRESSED ON MVS ¦ 300
K
 ¦ ¦ 50
K
 ¦ Organization ===> PS (PS/PO/ESDS/KSDS/RRDS/LDS) ¦ 500
K

32 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

 ¦ Record Format ===> FB (F/FB/V/VB, with S,A,M, or /U) ¦ 250
K
 ¦ Record Length ===> 512 (up to 32760 Byte, avg. max VSAM) ¦ 150
K
 ¦ Block Size ===> 23552 (up to 32760 Byte, CISZ for VSAM) ¦ 50
K
 ¦ Rel.Key.Pos. ===> (VSAM KSDS ¦ 350
K
S ¦ Key Length ===> (up to 255) (ONLY ¦ 800
K
 ¦ No.Dir.Blocks ===> (PO data sets only) ¦ 200
K
 ¦ Space Unit ===> TRKS (BLKS, TRKS, CYLS, or RECS) ¦ 150
K
 ¦ Primary Quantity ===> 256 (in above units) ¦ 250
K
 ¦ Secondary Quant. ===> (in above units) ¦ 500
K
 ¦ Volume Serial ===> MVSWK1 ¦ 550
K
 ¦ Generic Unit ===> 3380 ¦ 300
K
 ¦ ¦ 100
K
 ¦ COMMAND ====> ¦ 400
K
 +---+ 350
K
 EULER.FLAMTS02.DAT2 SEQ VB 260 3059 28500
K

 COMMAND ===>

If the decompression was regular it will be branched into the display menu. Otherwise
the FLAM error protocol will be displayed.

FLAM V4.5 (MVS) 33
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

9.9 FLCKV

This CLIST procedure is meant for the use in the panel 3.4 in ISPF (file list).

FLCKV analyses a VSAM-KSDS-FLAMFILE for propper settings (see program
FLAMCKV, ch. 3.8.1). It shows the procentual distribution of record lengths of the file
and the number of records per FLAM-matrix.

Please enter in the specific row

FLCKV / or %FLCKV / or only FLCKV

Example:

 Menu Options View Utilities Compilers Help

--
 DSLIST - Data Sets Matching FLAMT Row 52 of
856

 Command - Enter "/" to select action Message
Volume

--
 .
 .
 FLAMT.CMP.ESDS
VSAM
 FLAMT.CMP.ESDS.DATA
ZAWRK1
 flckv FLAMT.CMP.KSDS
VSAM
 FLAMT.CMP.KSDS.DATA
ZAWRK1
 FLAMT.CMP.KSDS.INDEX
ZAWRK1
 .
 .
 .
 Command ===> Scroll ===> CSR

produces the following output

 Menu Utilities Compilers Help

--
 BROWSE FLAMT.FTMP.L3508 Line 00000000 Col 001
080
********************************* Top of Data

34 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

Chapter 9 The FLAM user interface

* FLAMCKV, a program of FLAM utilities * copyright (c) 2009 - 2014 by limes
dat

Utility to check a VSAM-KSDS FLAMFILE for proper settings

Data Set Name : FLAMT.CMP.KSDS

RECSIZE : 1,024 CINV : 8,192 RKP : 0 KEYLEN : 9
High used relative byte address (HURBA): 147,456

Number of Records : 6
Number of Bytes : 4,895

Min. RECSIZE : 138 Max. RECSIZE : 1,024

Number of VSAM-records needed for one FLAM-matrix :
 1 : 1
 2 : 0
 3 : 0
 4 : 0
 5 : 1
 6 : 0
 7 : 0
 8 : 0
 9 : 0
 10 : 0
 > : 0

Record length distribution:

RECSIZE No. Records in Percent
-------+---------------+----------
< 10 % 0 0
< 20 % 1 16
< 30 % 0 0
< 40 % 0 0
< 50 % 0 0
< 60 % 0 0
< 70 % 1 16
< 80 % 0 0
< 90 % 0 0
<100 % 0 0
 100 % 4 66
******************************** Bottom of Data

 Command ===> Scroll ===> CSR

This small testfile contains only 6 VSAM-records. 5 records build one FLAM-matrix, one
matrix ist stored in one VSAM-record. Therfore, this file contains two FLAM-matrixes.

When your file shows similar results, we would recommend to increase the RECSIZE of
the VSAM file by the factor 5!

For best perfomance, one VSAM-record should contain one FLAM-matrix. Here are 4
full records and one smaller necessary to hold one matrix. That means, FLAM has to
read 5 VSAM-records to decompress one matrix. More records to read decreases
performance in direct access mode.
FLAM V4.5 (MVS) 35
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

The FLAM user interface Chapter 9

36 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

FLAM (MVS)

User Manual

Appendix

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015by limes datentechnik gmbh

Appendix

Appendix

A.1 Code translation tables

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. NUL
00

SOH
01

STX
02

ETX
03 1A

HT
09 1A

DEL
7F 1A 1A 1A

VT
0B

FF
0C

CR
0D

SO
0E

SI
0F

0.

1. DLE
10

DC1
11

DC2
12

DC3
13 1A 1A

BS
08 1A

CAN
18

EM
19 1A 1A

FS
1C

GS
1D

RS
1E

US
1F

1.

2.
1A 1A 1A 1A 1A

LF
0A

ETB
17

ESC
1B 1A 1A 1A 1A 1A

ENQ
05

ACK
06

BEL
07

2.

3.
1A 1A

SYN
16 1A 1A 1A 1A

EOT
04 1A 1A 1A 1A

DC4
14

NAK
15 1A

SUB
1A

3.

4. SP
20 1A 1A 1A 1A 1A 1A 1A 1A 1A

[
5B

.
2E

<
3C

(
28

+
2B

!
21

4.

5. &
26 1A 1A 1A 1A 1A 1A 1A 1A 1A

]
5D

$
24

*
2A

)
29

;
3B 5E

5.

6. -
2D

/
2F 1A 1A 1A 1A 1A 1A 1A 1A

¦
7C

,
2C

%
25

_
5F

>
3E

?
3F

6.

7.
1A 1A 1A 1A 1A 1A 1A 1A 1A 60

:
3A

#
23

@
40

'
27

=
3D

"
22

7.

8.
1A

a
61

b
62

c
63

d
64

e
65

f
66

g
67

h
68

i
69 1A 1A 1A 1A 1A 1A

8.

9.
1A

j
6A

k
6B

l
6C

m
6D

n
6E

o
6F

p
70

q
71

r
72 1A 1A 1A 1A 1A 1A

9.

A.
1A

~
7E

s
73

t
74

u
75

v
76

w
77

x
78

y
79

z
7A 1A 1A 1A 1A 1A 1A

A.

B.
1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A

B.

C. {
7B

A
41

B
42

C
43

D
44

E
45

F
46

G
47

H
48

I
49 1A 1A 1A 1A 1A 1A

C.

D. }
7D

J
4A

K
4B

L
4C

M
4D

N
4E

O
4F

P
50

Q
51

R
52 1A 1A 1A 1A 1A 1A

D.

E. \
5C 1A

S
53

T
54

U
55

V
56

W
57

X
58

Y
59

Z
5A 1A 1A 1A 1A 1A 1A

E.

F. 0
30

1
31

2
32

3
33

4
34

5
35

6
36

7
37

8
38

9
39 1A 1A 1A 1A 1A 1A

F.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

Translation table from EBCDIC to ASCII

(TRANSLATE = E/A)

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

1

Appendix

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. NUL
00

SOH
01

STX
02

ETX
03

EOT
37

ENQ
2D

ACK
2E

BEL
2F

BS
16

HT
05

LF
25

VT
0B

FF
0C

CR
0D

SO
0E

SI
0F

0.

1. DLE
10

DC1
11

DC2
12

DC3
13

DC4
3C

NAK
3D

SYN
32

ETB
26

CAN
18

EM
19

SUB
3F

ESC
27

FS
1C

GS
1D

RS
1E

US
1F

1.

2. SP
40

!
4F

"
7F

#
7B

$
5B

%
6C

&
50

'
7D

(
4D

)
5D

*
5C

+
4E

,
6B

-
60

.
4B

/
61

2.

3. 0
F0

1
F1

2
F2

3
F3

4
F4

5
F5

6
F6

7
F7

8
F8

9
F9

:
7A

;
5E

<
4C

=
7E

>
6E

?
6F

3.

4. @
7C

A
C1

B
C2

C
C3

D
C4

E
C5

F
C6

G
C7

H
C8

I
C9

J
D1

K
D2

L
D3

M
D4

N
D5

O
D6

4.

5. P
D7

Q
D8

R
D9

S
E2

T
E3

U
E4

V
E5

W
E6

X
E7

Y
E8

Z
E9

Ž
4A

\
E0

!
5A

^
5F

_
6D

5.

6. `
79

a
81

b
82

c
83

d
84

e
85

f
86

g
87

h
88

i
89

j
91

k
92

l
93

m
94

n
95

o
96

6.

7. p
97

q
98

r
99

s
A2

t
A3

u
A4

v
A5

w
A6

x
A7

y
A8

z
A9

{
C0

¦
6A

}
D0

~
A1

DEL
07

7.

8.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

8.

9.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

9.

A.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

A.

B.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

B.

C.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

C.

D.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

D.

E.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

E.

F.
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

F.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

Translation table from ASCII to EBCDIC

(TRANSLATE = A/E)

2 FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015by limes datentechnik gmbh

2

Appendix

Explanation of abbreviations

ACK = acknowledge (positive)
BEL = bell
BS = backspace
CAN = cancel
CR = carriage return
DC1 = device control 1
DC2 = device control 2
DC3 = device control 3, stop output
DC4 = device control 4
DEL = delete
DLE = data link escape
EM = end of medium
ENQ = enquiry, station call
EOT = end of transmission
ESC = escape
ETB = end of transmission block
ETX = end of text
FF = form feed
FS = file separator
GS = group separater
HT = horizontal tabulation
LF = line feed
NAK = negative acknowledge,
NUL = null, no operation
RS = record separator
SI = shift in, switch back character set
SO = shift out, switch character set
SOH = start of heading
SP = space, blank
STX = start of text
SUB = substitute character
SYN = synchronous idle
US = unit separator
VT = vertical tabulation

FLAM V4.5 (MVS)
Frankenstein-Limes-Access-Method © 2015 by limes datentechnik gmbh

3

