
FLAM®-sub (MVS)
FRANKENSTEIN-LIMES-ACCESS-METHOD

USER MANUAL

— Edition July 2017 Version 4.7 —

© Copyright 1992-2017 by limes datentechnik® gmbh Louisenstraße 21 D-61348 Bad Homburg
Telephone ++49 6172 / 5919-0 Telefax ++49 06172 / 5919-39

http://www.flam.de http://www.limes-datentechnik.de support@flam.de

User Manual FLAM®-sub V4.7 (MVS)

© Copyright 2017 by limes datentechnik® gmbh

All rights reserved. The reproduction, transmission or
use of this document is not permitted without express
written authority.

Offender will be liable for damages.

Delivery subject to availability, right of technical
modifications reserved.

Preface

Preface

This manual describes how to handle the FLAM
subsystem in the IBM z/OS (OS/390, MVS) operating
system.

FLAM®-sub is an interface to FLAM® (MVS), the
compression and encryption utility, and may only be
used in conjunction with a license for FLAM®-utility.

FLAM® (MVS) is described in the manual FLAM® (MVS)
V4.7, the encryption method is found in the manual
FLAM® & AES.

FLAM®, FLAMFILE® und limes datentechnik® are
international trademarks.

FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

1

FLAM®-sub (MVS)

User Manual

Summary of changes

Summary of changes

Summary of changes 8 FLAM®-sub V4.7

This release is an adaption to the FLAM® (MVS) utility
V4.7.

It includes the following new features

- zEDC Support

When the hardware compression accelerator card zEDC
is found it will be used in MODE=ADC.
This function is controlled via environment or system
variables.

- AES-encryption with MODE=CX8/VR8

You can now use AES encrypted FLAMFILEs for direct
record access as before without encryption in CX8/VR8
compression mode.
This function requires FLAM (MVS) V4.7 as minimum for
decompression/decryption and is actually supported only
on z/OS-systems.

- LOGR Support

FLAM-sub writes log data to a LOGR stream as the FLAM
utility does if system variables are found.

Summary of changes 7 FLAM®-sub V4.5

This release is an adaption to the FLAM® (MVS) utility
V4.5.

It includes the following new features

- KME=FKMEFILE

This key management extension routine reads a key from
a sequential file to encrypt/decrypt the written/read data
via the FLAM® subsystem.

The file may be of fixed or variable record length. Trailing
blanks are ignored.

The syntax of the key is the same as of parameter
CRYPTOKEY.

The file may be protected by RACF, so this is an easy way
for encryption/decryption without any key-protocol.

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Summary of changes

- License check

The subsystem modules are now included in the FLAM®
(MVS) LOAD library. There is an own license check
implemented avoiding using the FLAM-subsystem without
a special license.

Summary of changes 6 FLAM®-sub V4.4

The Key Management Interface of FLAM (MVS) (->
manual FLAM (MVS) V4.x, ch. 3.5.5) is implemented in
this subsystem release:

A user written module is invoked when opening a data
set to provide FLAM-sub with a key for encryp-
tion/decryption.

This method allows an automatic encryption/decryption of
files without any manual user action. The key used is not
shown in any protocol.

Summary of changes 5 FLAM®-sub V4.3

Introducing crypto hardware CPACF in newer
hardware systems z9 and z10 allows FLAM®-sub V4.3
to use these new routines for AES encryption.

FLAM®-sub automatically checks the availability, so no
parameter other than CRYPTOMODE=AES is needed.

Encryption by hardware increases perfomance and
decreases cputime. Up to 30 % may be. It depends on
the compression ratio, less compression increases time
savings. Particularly using MODE=NDC, packing files
without compression.

Summary of changes 4 FLAM®-sub V4.1

FLAM®-sub V4.1 benefits from the new and faster
implementation of the AES algorithm in FLAM (MVS)
V4.1.

Up to 50 % CPU time is saved using the new AES
routines in the subsystem.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Summary of changes

Summary of changes 3 FLAM®-sub V4.0

FLAM®-sub V4.0 incorporates the following changes as
compared with Version 3:

Support of AES-encryption (Advanced Encryption
Standard)

Using parameter CRYPTOMODE=AES all data will be
encrypted in Advanced Encryption Standard mode,
introduced in FLAM (MVS) V4. Additional information
(hash-MACs) is stored in the FLAMFILE.

FLAMFILE split is supported

During output mode (writing records into an empty
file) a FLAMFILE can be split serially or in parallel into
several parts, subject to the settings of the parameters
SPLITMODE, SPLITNUMBER, and SPLITSIZE.

MODE=NDC (No Data Compression) is supported

Data compression can be suppressed using
MODE=NDC. Data are only formatted and, if
requested, encrypted. This saves CPU time with data
that do not compress efficiently
(e.g. FLAMFILEs or compressed image files). The same
security features are available as for compressed data.

MODE=NDC is downwards compatible with FLAM V3.x.

Summary of changes 2 FLAM®-sub V3.0

FLAM®-sub V3.0 incorporates the following changes as
compared with Version 2:

MODE=ADC (Advanced Data Compression) is
supported

Using MODE=ADC all data are compressed by the new
ADC-algorithm of FLAM V3.x, the highest efficient
compression method for all data (even non-structured
data).

Loading VSAM-KSDS with a Utility (i.e. IEBGENER,
SORT)

FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Summary of changes

Although utilities use a (sequential) DCB to open a
subsystem data set, it is now possible to load a VSAM-
KSDS file with FLAM®-sub.

Activate FLAM®-sub as a 'Started Task'

Start FLAM®-sub as a Started Task (S FLAM). So it is not
longer necessary to wait for an IPL to test FLAM®-sub.

Summary of changes 1 FLAM®-sub V2.0

FLAM®-sub V2.0 incorporates the following changes as
compared with Version 1:

VSAM accesses supported

The calling programs can be written either in
Assembler or in COBOL.

All logical VSAM accesses are supported by FLAM®-sub
V2.0, in both MOVE and LOCATE mode and for both
synchronous and asynchronous calls.

In particular, VSAM-KSDS commands are also
converted logically if an UPDATE is performed.

The index entries have been reduced to a minimum
and compressed, so that less space is taken up in the
memory and the overall performance is enhanced
when VSAM files are accessed.

Physical accesses via memory addresses (RBA) are not
supported.

Reading of uncompressed files supported

If the input is an uncompressed file, it can also
optionally be read via the subsystem.

In this case, the keyword parameter IG10 must be
entered for the subsystem:

//... DD ...,SUBSYS=(FLAM,IG10,'flam-parameter')

This parameter has no effect on compressed files.

TRACE function

A TRACE function can be activated for test purposes.

4 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Summary of changes

In this case, the keyword parameter TRACE must be
entered for the subsystem:

//... DD ...,SUBSYS=(FLAM,TRACE,'flam-parameter')

All function calls to FLAM, as well as ACB and RPL of
the calling program, are then traced in a file.

The trace file must be specified in the JCL. The FLAM
parameter 'MSGDDN=ddname' indicates the DD name.
If no name is specified the parameter for the DEFAULT
specification is used (generally FLPRINT; cf. INST02 job
of the FLAM utility).

The trace file can also be specified as a subsystem file:

//FLPRINT DD DSN=trace-file,SUBSYS=FLAM

New interface to FLAM utility

As of this version, all the required FLAM utility modules
are loaded as resident programs, in other words the
subsystem modules no longer need to be linked to the
utility. Consequently, no 'relinks' are necessary if the
license number for the utility changes.

On the other hand, the load module library of FLAM-
utility now also needs APF authorization.

We recommend keeping the subsystem and utility load
modules in one library.

FLAM®-sub V4.7 (MVS) 5
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Contents

Contents

Chapter 1 1. FLAM® as a subsystem 1

Chapter 2 2. Subsystem call 1

Chapter 3 3. Preconditions 1

Chapter 4 4. Principle of operation 1

Chapter 5 5. Restrictions 1

5.1 In general 1

5.2 DCB calls (PS files) 2

5.3 ACB/RPL calls (VSAM files) 2

Chapter 6 6. Parameters for FLAM® 1

Chapter 7 7. Parameters for controlling the
subsystem 1

Chapter 8 8. Subsystem messages 1

Chapter 9 9. Installing FLAM®-sub 1

9.1 LINKLST and authorization 2

9.2 Subsystem start 3

Chapter 10 10. Examples 1

10.1 Input/output with catalogued files 1

10.2 FLAM® parameters and subsystem 2

10.3 Creating a new file 2

10.4 Temporary files 3

10.5 Other subsystems 3

10.6 Loading a VSAM-KSDS file 3

10.6.1 Load a real VSAM-KSDS file 4

10.6.2 Load a VSAM-KSDS file via an utility 4

10.7 TRACE function 5

10.8 FLAMFILE® split 7

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2010 by limes datentechnik gmbh

Contents

10.8.1 Serial split 7

10.8.2 Parallel split 8

10.9 Encryption 9

10.9.1 Encryption via CRYPTOKEY parameter 9

10.9.2 Encryption via KME module 9

10.9.3 Encryption with FKMEFILE 10

10.10 Using zEDC-hardware card 11

10.10.1 Automatically 11

10.10.2 Never 11

10.10.3 Always zEDC 11

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 1:

FLAM® as a subsystem

Chapter 1 FLAM® as a subsystem

1. FLAM® as a subsystem

FLAM®-sub supports the subsystem interface of the
command language (JCL) in z/OS. Files can thus be
processed in compressed an encrypted form without
having to modify the associated programs. The
additional compression and decompression steps
which were necessary in the past can now be
dispensed with.

The calling program is not aware of any differences as
compared with the conventional mode of file
processing. It receives a record for a read call in the
same way as before, while for a write call the data
management system (DMS) receives the record as
usual. The subsystem decompresses before reading
and compresses before writing.

The compression results are similar to those of the
FLAM utility (approx. 70-90%).

The FLAM subsystem even enables programs to be
supported with file formats for which they were not
originally written, in other words the program and the
data formats can be separated from one another.

The FLAM subsystem is loaded almost entirely in the
high address space (above 16 MB); only a small tuning
module for 24-bit addressing works in the low address
space. Since 24-bit addressing is used for the DMS
accesses to PS files, a memory area corresponding to
the length of one data record is created in the low
address space. FLAM creates all work areas above the
16 MB limit, so that the usual memory area is still
made available to the applications.

No changes are normally necessary in the calling
programs.

The compressed files created by the subsystem
(FLAMFILEs) can be decompressed by the FLAM utility
at any time, and all FLAMFILEs created by the FLAM
utility are accepted and processed logically by the
FLAM subsystem. The same applies likewise to
FLAMFILEs that are created/read via the record
interface of FLAM (see also manual for FLAM V4.x).

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 2:

Subsystem call

Chapter 2 Subsystem call

2. Subsystem call

//ddname DD DSN=filename,
// DISP=OLD,
// SUBSYS=(FLAM,'flam-parameter')

This call designates the cataloged file filename for
processing with the FLAM subsystem.

FLAM parameters can be specified in addition, in the
same way as with the FLAM utility.

Invalid parameters are rejected by FLAM as JCL errors
and the job they refer to is not even started. The DD
command is still verified by JES.

The catalog entry for the file is not modified by FLAM.
All entries such as the file name, the record and block
lengths, the volume, etc. remain unchanged.

The files that must be processed with the FLAM
subsystem are thus still verified by the check
mechanisms, such as SMS and RACF.

There is no FLAM restriction on the number of files
that can be processed "simultaneously" by the
subsystem. The only restrictions are those imposed by
the system itself, such as the maximum amount of
available memory or the maximum possible number of
DD statements.

If files for which the SUBSYS specification in the DD
statement is not supported must be processed (for
example, JES files), the problem can be overcome by
specifying a FLAM parameter and a second DD
statement:

//ddname DD SUBSYS=(FLAM,'FLAMDDN=ddname1'),
// DCB=(LRECL=....,BLKSIZE=....)
//ddname1 DD SYSOUT=G,DEST=(.....),
// DCB=(LRECL=80,.....)

Specifying a DD name ddname1 as a FLAM parameter
causes the subsystem to process the file assigned by
means of this name (in this case by writing in it). This
file must be specified in the JCL. Similarly, ddname1
could be used as a decompression input. The calling
program, on the other hand, uses the file assigned
with ddname!

This method permits reading or writing in any file (JES,
RJE, other subsystems, magnetic tapes, temporary
files, etc.) which cannot otherwise be processed with
the usual method (see examples).

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Subsystem call Chapter 2

If DCB attributes are specified for ddname, FLAM
interprets them as values for the original
(uncompressed) file. DCB specifications for ddname1
apply to the compressed file (the FLAMFILE).

Record and block formats which are completely
different from one another can thus be set for the
original and compressed files depending on the
particular problem, in other words the subsystem
allows an application to use files that have absolutely
nothing in common with the entries in the program
(see examples) and that without the subsystem might
have to be converted.

If the FLAMFILE is accessed without a SUBSYS
specification, it behaves like a "normal" file, in other
words it can be read (copied, transferred) by means of
utilities or file transfer programs without being
decompressed!

Similarly, a FLAMFILE which is transferred by a file
transfer program can be read and processed via the
subsystem.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 3:

Preconditions

Chapter 3 Preconditions

3. Preconditions

FLAM must be installed on the computer (see
installation instructions) both as a utility (V4.0 or
higher) and as a subsystem.

Data records can be written, read, modified, inserted
or deleted. The data set organization may be of PS or
VSAM.

The accesses must be logical, in other words either in
sequential order or according to a key. Accesses
according to the RBA (relative byte address) of a data
record or an alternate index are not possible!

A DCB for PS files or an ACB for VSAM files can be
coded in the calling program. The programs (or more
precisely the file control block DCB) must be stored in
the low address space.

A FLAMFILE in KSDS format must have the same
structure as in the FLAM utility (see manual for FLAM
(MVS)), i.e.

Relative key position 0
Key length one byte longer than the

original
Record length between 80 and 32760

bytes
Control interval size any, depending on record

length

Although FLAM supports a wide range of record
length, please take care on performance views.

FLAM compresses a number of data records in a row
(depending on MAXR and MAXB parameter). MAXB=64
means 64 KB of Data will be compressed. Assume a
compression rate of 90 %, this will lead to a
compression result of 6.4 KB compressed data. If you
had defined the VSAM-KSDS-FLAMFILE like your
original file (i.e. with record size of 400 byte) FLAM has
to write 17 VSAM records for the compressed data,
each with a new built key. So has FLAM to read 17
records to decompress one original record. So it is
better to define a larger RECSIZE for the FLAMFILE, in
this example you should use RECSIZE(7168 7168).

Note:

The runtime system of COBOL (PL/I, C) checks all
assigned VSAM files.

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Preconditions Chapter 3

The FLAMFILE must therefore be tuned to the VSAM
file type if COBOL programs are used: for accesses to
VSAM-ESDS it must also have been created as ESDS,
while for accesses to VSAM-KSDS a KSDS-FLAMFILE
must exist as well.

With Assembler programs, on the other hand, the
FLAMFILE and the original file need not necessarily be
of the same type (providing this is also meaningful).

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 4:

Principle of operation

Chapter 4 Principle of operation

4. Principle of operation

All the JCL specifications are checked before a batch
job is started by JES. The parameters for the subsystem
are transferred and verified by FLAM-sub. If an error is
detected, the DD statement is rejected as a JCL error.
In addition, a message is output in the JCL list (see
messages in examples section). The job is thus only
started if there are no errors; otherwise it is aborted in
the usual way.

An OPEN command call in the program causes a
connection to be set up to the FLAM subsystem. FLAM-
sub decides at this stage whether the file must be
compressed or decompressed. An open input means
decompression (read only), while an open output
means compression (write only). An open I/O allows
full I/Os to the FLAMFILE via the key of the original
records. At the same time, the record and block
lengths are taken from the calling program (or from
the DCB specifications in the JCL) and - in the case of
an open output - transferred to the FLAM file header of
the FLAMFILE (unless the HEADER=NO parameter has
been specified).

The FLAM parameters specified in the JCL are also
activated at the time of the open and the compression/
decompression routines set accordingly.

All read and write accesses take place in accordance
with the specifications in the program. Asynchronous
VSAM calls are executed synchronously by the
subsystem, while return codes are not returned (or the
error routines activated) until the CHECK call.

It makes no difference whether the file is accessed by
the program as BSAM, QSAM or VSAM. FLAM-sub maps
all calls to the currently available FLAMFILE.

The record format can always be either variable or
fixed.

If an error occurs, the error routine remains active in
the calling program and is not overlaid by the
subsystem. The error return codes that are returned
by the subsystem correspond to those of the DMS (see
also 'MVS/DFP Macro Instructions for VSAM Data Sets'
for VSAM error codes), in other words the error
routines need not be modified; the IEC ... messages of
the DMS (MVS Message Library: System Messages) are
still traced if necessary. Additional messages are
output by FLAM-sub with WTO,Routcde=11 for FLAM
errors and subsystem errors (see chapter 8,
'Subsystem messages'). They are documented both in
the system log and in the JCL list.

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Principle of operation Chapter 4

No other messages are generated (the FLAM
SHOW=ALL parameter of the utility has no effect).

A CLOSE for the file causes FLAM to close the FLAMFILE
and free all the work areas again that were requested
with the OPEN. New OPEN calls are now allowed.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 5:

Restrictions

Chapter 5 Restrictions

5. Restrictions

It is not normally necessary to modify the JCL as a
result of using the FLAM subsystem.

If specifications such as the record and block lengths
are omitted from the programs however (utilities such
as IEBGENER and SORT function in this way), DCB
specifications must be included in the DD statement!

The usual principle whereby the values are
automatically taken from a catalog entry in such cases
does not work if a subsystem is used. An OPEN routine
only recognizes the actual presence of a subsystem file
and no longer accesses a catalog entry (even if one
exists).

5.1 In general

ADC MODE=ADC is not allowed in update mode.

DGD Data Generation Groups must be specified with the
absolute name (FILE.G0004V00), not with the relative
name (FILE(+1)).

DISP The DISP parameter in the DD statement (e.g.
DISP=NEW or DISP=(..., DELETE) cannot be interpreted
and thus has no effect.

All files that are assigned directly via FLAM-sub
(DSN=filename, SUBSYS=FLAM) must be cataloged.

If new files must be created, a second DD statement
can be used:

//ddname DD SUBSYS=(FLAM,'FLAMDDN=newfile')
//newfile DD DSN=...,
 DISP=(NEW,CATLG),
 UNIT=...,SPACE=...

Alternatively, the file must have been created in a
previous STEP.

All types of access (GET, WRITE, PUT, POINT, ERASE,
CHECK) with appropriate RPL modifications for VSAM
are possible via the subsystem.

The following restrictions apply (see also manual
'DFSMS/MVS Macro Instructions for Data Sets, SC26-
4913'):

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Restrictions Chapter 5

5.2 DCB calls (PS files)

CLOSE A temporary close call in conjunction with BSAM
accesses (CLOSE ...,TYPE=T) is not passed on to the
subsystem and has no effect.

LOCATE All attempts to write in LOCATE mode are rejected.

POINT A POINT in conjunction with BSAM accesses is rejected
with the error message IEC141I 013-BC .. (it is not even
passed on to the subsystem).

VBS A file with RECFM=VS or VBS (spanned records) can be
written in but not read (IEC141I 013-A8 ...).

5.3 ACB/RPL calls (VSAM files)

CHECK Asynchronous calls are executed synchronously by
FLAM-sub (though, as usual, no response to errors
until CHECK).

CNVTAD CNVTAD returns invalid specifications or zero.

ENDREQ ENDREQ (terminate a request) has no effect (FLAM
does not support locks and only holds the last key).

RPL Accesses with more than one RPL (RPL list) are not
supported (only the first RPL is interpreted).

SHOWCB SHOWCB ACB=...
The CINV, KEYLEN, LRECL and RKP fields contain the
values for the original file, while all other specifications
(such as ENDRBA, HALCRBA, etc.) refer to the
FLAMFILE.

VERIFY VERIFY (synchronize end of data) has no effect (VSAM
control blocks are not updated).

VSAM-KSDS If a VSAM-KSDS file must be loaded via FLAM-sub
(OPEN OUTPUT in the program), the position and
length of the key must be notified to the subsystem
(important: the key position is 1 byte higher for FLAM
than the RKP for IDCAMS!):

//... DD …,
SUBSYS=(FLAM,'OKEYP=value1,OKEYL=value2')

The reason for this is as follows:
These specifications are normally transferred by
means of IDCAMS when the file is cataloged. With
VSAM accesses these specifications are contained in
the catalog entry and not in the ACB. The FLAMFILE
has been cataloged there with completely different
values however, so that the parameters of the original
file are no longer available. This information is
contained in the compressed file for all subsequent

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 5 Restrictions

accesses (INPUT or I/O) and does not need to be
specified again.

FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 6:

Parameters for FLAM®

Chapter 6 Parameters for FLAM®

6. Parameters for FLAM®

Parameters for FLAM are transferred in the DD statement
of the SUBSYS specification:

SUBSYS=(FLAM,'parameter1=value1,parameter2=value2,..')

or

SUBSYS=(FLAM,'parameter1=value1','parameter2=value2','...')

The parameters correspond to those of the FLAM utility
(see also manual for FLAM V4.x).

Parentheses () can also be used instead of the equals
sign '=', e.g. MO(ADC).

Any apostrophes contained within the parameter string
literal must be duplicated
(e.g. SUBSYS=(FLAM,'CRYPTOKEY=C''PASS WORD
WITH BLANKS''').

CRYPTOKEY Key to encrypt or decrypt a FLAMFILE

CRYPTOK This parameter activates the cryptographic method,
entered with parameter CRYPTOMODE.

Possible values:

1 - 64 characters starting with A'...', C'...', X'...' or a string

Using A'..' all characters are translated to ASCII with
the internal translation table A/E.

Default: no key

Valid for: compression, decompression

Note:
Please take care of the different code tables or
national character sets used on the different
platforms.

E.g. using the key 'FLAM' both on Windows systems
(ASCII) and on MVS (EBCDIC) leads to a cryptokey
error. You have to pass X'464C414D20' (this is 'FLAM '
in ASCII) or A'FLAM' on MVS instead.

We recommend to use the hex input for a
heterogeneous environment.

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Parameters for FLAM® Chapter 6

CRYPTOMODE Choose the algorithm for encryption.

CRYPTOM Possible values:

AES Advanced Encryption Standard

FLAM the internal FLAM algorithm

Default: FLAM

Valid for: Compression.

Note:
AES was introduced 2003 in FLAM V4.0 and is not
compatible to older versions 3.x.

The encryption will be activated by the parameter
CRYPTOKEY. The encryption mode is stored in the
FLAMFILE, only the key is necessary on decompression
and decryption.

Encryption implies MODE=ADC or NDC. Without
entering a MODE-parameter ADC is used.

FILEINFO Transfer file name of original into file header.

FI Possible values:

YES Transfer file name

NO Do not transfer file name

Default: YES

Valid for: Compression

FLAMDDN DD name of a FLAMFILE assigned by JCL.

FLAMD Compresses to this file or decompresses from this file.

Possible values:

DD name with up to 8 characters

Default: No name

Valid for: Compression, decompression

Note:
The file name (DSN=name) with the SUBSYS-parameter
is stored in the FLAMFILE, not the name of the file
FLAMDD is pointing to.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 6 Parameters for FLAM®

HEADER Creates a file header.

HE Possible values:

YES Create file header

NO Do not create file header

Default: YES

Valid for: Compression

Note:
Only for special usages, the header should always be
created, so that the subsystem can access it in future
in order to process the file.

HEADER=YES is set using AES-encryption.

KMEXIT Use the key management exit module

KME Possible values:

name name of the module (max. 8
characters)

Default: none

Valid for: en-/decryption

The module is loaded dynamically.

Note: This Parameter overrules CRYPTOKEY
This module is required to benefit from a fully
automatic encryption/decryption (-> manual FLAM
(MVS) V4).

Because of the specific conditions in a subsystem
environment this module has to be written in
Assembler! Using a high level language will lead to
system errors.

KMPARM Parameter used for the KMEXIT.

KMP Possible values:

Any input up to 256 characters in the form
A’...’, C’...’, X’...’, or as a string.

Default: no parameter

Valid for: encryption/decryption

FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Parameters for FLAM® Chapter 6

MAXBUFFER Maximum size of the compressed-file matrix.

MAXB Possible values:

0 - 7 (Compatibility with FLAM V2.0)

8 - 2047 Size in kilobytes

Default: 64 Kbytes

Valid for: Compression (CX8,VR8)

MAXRECORDS Maximum number of records in a compressed-file
matrix.

MAXR Possible values:

1 - 255 for MODE=CX7/CX8/VR8

1 - 4095 for MODE=ADC

Default: 255 or 4095 (depends on MODE-
parameter)

Valid for: Compression

Note for FLAMFILEs in KSDS format:
If accesses are normally direct, a lower value should be
specified for MAXR (<= 64).

MAXSIZE Maximum record length of the compressed file.

MAXS Possible values:

80 - 32760

Default: 512 bytes

Valid for: Compression

Note:
The LRECL entry in the catalog takes priority for fixed
files (RECFM=F,FB,FBS), while for variable files and
VSAM, MAXS is valid as the maximum length, even if a
higher value is specified in the catalog for LRECL or
RECSIZE.

MODE Compression method

MO Possible values:

ADC 8-bit compressed file with highest
compression
(Advanced Data Compression)

NDC no compression of data

4 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 6 Parameters for FLAM®

CX7 Transformable, 7-bit compressed
 file

CX8 8-bit compressed file (runtime-
optimized)

VR8 8-bit compressed file (memory-
optimized)

Default: VR8

Valid for: Compression

Note:
MODE=ADC is set using encryption when no MODE is
set..

MSGDDN DD name of a trace file assigned by JCL.

MSGD Causes a TRACE to be written in this file (see TRACE
parameter).

Possible values:

DD name with up to 8 characters

Default: FLPRINT

Valid for: Compression, decompression

ODSORG Specifies the original files data organization of the
output.

ODSO Possible values:

PS, KSDS

Default: PS (output for a sequential data set)

Valid for: Compression

Note:
Use this parameter to load a VSAM-KSDS file although
a DCB for a PS file is used (i.e. by a utility).

OKEYLEN Key length of the original file at the time of the output.

OKEYL Possible values:

0, 1 – 255

Default: 8 if key sequenced data,
0 else

Valid for: Compression

FLAM®-sub V4.7 (MVS) 5
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Parameters for FLAM® Chapter 6

OKEYPOS Key position of the original file at the time of the
output.

OKEYP Possible values:

0, 1 up to record length minus key length

Default: 1 if key sequenced data

Valid for: Compression

SECUREINFO Additional information stored in the FLAMFILE

SEC increasing the security of data. Changing the FLAMFILE
(in any way) leads to an decompression error.

Possible values:

YES create these information (default
on encryption) on compression

NO do not store any additional data

IGNORE ignore any security violations on
decompression

Default: NO (without encryption)

YES (with AES encryption)

Valid for: compression, decompression

Note:
Concatenation of "secure" FLAMFILEs leads to security
violations!

SECUREINFO=YES requires MODE=ADC or NDC and is
set automatically using AES encryption.

SPLITMODE Mode to split a FLAMFILE

SPLITM Possible values:

NONE no split

SERIAL serial split

PARALLEL parallel split

Default: NONE

Valid for: compression

Note:
Split of FLAMFILEs has been introduced in FLAM V4.0
and is not compatible to older versions.

6 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 6 Parameters for FLAM®

The split information is stored in the FLAMFILE. So it is
not necessary to use any parameter on
decompression.

File- or DD-names must have numeric characters (ch.
3.1.5, or example in ch. 5.1.3 in manual FLAM (MVS) V4,
or example 10.8 in this manual).

SPLITNUMBER Number of fragments on parallel split

SPLITN Possible values:

2 - 4 number of simultaneously written
files

Default: 4

Valid for: compression

Note:
The information is stored in the FLAMFILE. So it is not
necessary to use any parameter on decompression.

All fragments have to be catalogued and ready to read.
It is not possible, to decompress one fragment alone.

Using this parameter requires SPLITMODE=PARALLEL.

SPLITSIZE Amount in MB of a fragment on serial split

SPLITS Possible values:

1 - 4095

Default: 100

Valid for: compression

Note:
The number of created files depends on the amount of
compressed data. The information is stored in the
FLAMFILE.

Using this parameter needs SPLITMODE=SERIAL.

TRANSLATE Data conversion.

TRA Possible values:

E/A Converts from EBCDIC to ASCII

A/E Converts from ASCII to EBCDIC

name Name (up to 8 characters) of a data
module containing a 256 byte long
translation table.

FLAM®-sub V4.7 (MVS) 7
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Parameters for FLAM® Chapter 6

Default: No conversion

Valid for: Compression or decompression
(but not simultaneously, i.e. I/O
mode)

8 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 6 Parameters for FLAM®

Environment Variable is stored in the file

//CEEOPTS DD …

or set in a C-program.

It is used in the actual STEP only and must be repeated
for every other STEP.

FL_ZEDC_SUPPORT controls using of the ZEDC hardware-algorithm

possible values:

OFF switch to ‚always NO ZEDC‘.
ADC is still in effect on compression.
Decompression will be done in
software, if ZEDC compressed data
are found.

ON switch to ‚always ZEDC‘.
Instead of ADC, ZEDC is used.
Without hardware, software is used.

Default: without variable, ZEDC hardware is
used when found. Otherwise ADC is still
in effect.

Valid for: compression, decompression

System Variable are stored in the system-parmlib

SYS1.PARMLIB(IEASYMxx)

When system- and environment variable are found, the
environment variable is used.

A system variable is used system wide in any STEP.

&FLZEDC controls using of the ZEDC hardware-algorithm

possible values:

FLAM®-sub V4.7 (MVS) 9
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Parameters for FLAM® Chapter 6

OFF switch to ‚always NO ZEDC‘.
ADC is still in effect on compression.
Decompression will be done in
software, if ZEDC compressed data
are found.

ON switch to ‚always ZEDC‘.
Instead of ADC, ZEDC is used.
Without hardware, software is used.

Default: without variable, ZEDC hardware is
used when found. Otherwise ADC is still
in effect.

Valid for: compression, decompression

&FLOGQL1 is the name of the first qualifier of the
logstream

name (LOGR).

Without it no logging is done.

Possible values:

1-8 Character as in IXCMIAPU defined.

&FLOGQL2 is the name of the second qualifier of the log-
stream name (LOGR).

Possible values:

1-8 Character as in IXCMIAPU defined.

&FLOGQL3 is the name of the third qualifier of the log-
stream name (LOGR).

Possible values:

1-8 Character as in IXCMIAPU defined.

10 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 6 Parameters for FLAM®

Valid for: compression, decompression

FLAM®-sub V4.7 (MVS) 11
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 7:

Parameters for
controlling the
subsystem

Chapter 7 Parameters for controlling the subsystem

7. Parameters for controlling the
subsystem

These parameters are keyword parameters that must
be specified separately from the FLAM parameters.
They serve to control the subsystem and strictly
speaking have nothing to do with FLAM.

...SUBSYS=(FLAM,parm,'flam-parameter')

IG10 Causes return code 10 (not a
FLAMFILE) to be ignored when
opening for reading. The records
are transferred to the calling
program without being decom-
pressed.

This parameter is meaningful in
systems which can contain both
compressed and uncompressed
files (e.g. for tests).

TRACE Activates the TRACE function.

All function calls to FLAM and the
control blocks (ACB, RPL) of the
calling program are traced.

The trace file must be specified in
the JCL. The FLAM parameter
'MSGDDN=ddname' specifies the
DD name (default: FLPRINT).

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 8:

Subsystem messages

Chapter 8 Subsystem messages

8. Subsystem messages

FLAM-sub only outputs a message on the console in
the event of an error (by means of
WTO ,ROUTCDE=11). This message is also documented
in the JCL log.

The letter after the message number specifies the time
at which the error was detected:

I When the subsystem was initialized
C When the JCL was analyzed
A When the file was allocated
O When the file was opened
D During the I/O operation
E When the file was closed

Except when the subsystem is initialized during the IPL
of the operating system, errors only affect the
specified file for a particular job, in other words the
subsystem remains active for the other files.

FLM0500I INITIALIZATION OF SUBSYSTEM FLAM COMPLETED

The FLAM subsystem has been initialized correctly and
is now available.

Response: None

FLM0501I SUBSYSTEM FLAM NOT INSTALLED ON THIS SYSTEM

The subsystem cannot be initialized. It has not been
installed on the computer.

Response: Insert the entry FLAM,FLSSIPL
in SYS1.PARMLIB(IEFSSN..).

FLM0502I SUBSYSTEM FLAM ALREADY INITIALIZED

The program for initializing the subsystem was
restarted after the IPL and then rejected. The
subsystem that was already active is still active.

Response: FLAM-sub need not be restarted.

FLM0503I NO MEMORY RECEIVED FOR INITIALIZATION

The operating system cannot make any memory
available for initialization.
The subsystem is not active.

Response: An analysis is necessary (system
dump).

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Subsystem messages Chapter 8

FLM0504I SUBSYSTEM COULD NOT FREE SYSTEM MEMORY

The memory made available by the operating system
cannot be freed. The subsystem has nevertheless been
initialized and is now available.

Response: An analysis is necessary (system
dump).

FLM0505I SUBSYSTEM FLAM FUNCTION MODULE NOT FOUND

A FLAM-sub module required to initialize the
subsystem is missing. The module was named by a
previous operating system message. The subsystem
has not been initialized.

Response: Store the subsystem modules in a
library belonging to the LINKLIST
concatenation.

FLM0506I MODULE IEFJSVEC NOT FOUND

The IEFJSVEC operating system module required to
initialize the subsystem is missing.
The subsystem has not been initialized.

Response: Set the missing module in a library
that has been linked with the
LINKLIB.

FLM0507I IEFJSVEC: NO MEMORY FOR SSVT

The subsystem initialization procedure was aborted by
the IEFJSVEC operating system module because there
is insufficient memory.

Response: An analysis is necessary (system
dump).

FLM0508I LOGIC ERROR IN IEFJSVEC

The subsystem initialization procedure was aborted by
the IEFJSVEC operating system module due to an
internal error.

Response: An analysis is necessary (system
dump).

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 8 Subsystem messages

FLM0510I INTERNAL ERROR. RC = no

An internal error has been detected.
The subsystem has not been initialized.

Response: Please inform your sales partner.

FLM0515I INITIALIZATION OF SUBSYSTEM FLAM FAILED

The subsystem cannot be initialized due to an error.
The error situation was documented in a previous
message.

FLM0519I FLAM SUBSYSTEM IS NOT LICENSED

Your license does not allow using the subsystem.

FLM0520C PARAMETER ERROR: ...
FLM0502C SYNTAX ERROR: ...

An invalid parameter was entered in the DD statement
of the JCL for FLAM-sub.

Response: Correct the parameter (see
'Parameters') and restart the job.

FLM0523C NO MEMORY RECEIVED FOR JCL-CONVERTION

A subsystem module was not allocated any memory by
the operating system.

Response: An analysis is necessary (system
dump).

FLM0530A PARAMETER ERROR: ...
FLM0530A SYNTAX ERROR: ...

An invalid parameter was entered in the DD statement
of the JCL for FLAM-sub.
The invalid parameter is displayed.

Response: Correct the parameter (see
'Parameters') and restart the job.

FLM0531A NO MEMORY RECEIVED FOR ALLOCATION

A subsystem module was not allocated any memory by
the operating system.

Response: An analysis is necessary (system
dump).

FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Subsystem messages Chapter 8

FLM0540O OPEN ERROR. DDNAME=ddname. RC= no
(FLAM)/(VSAM)

An error was detected at the time of the open for the
file assigned in the JCL with ddname. FLAM return
codes are specified in decimal format and VSAM errors
in hexadecimal format (see also manual for FLAM
(MVS) V4.x; and DFSMS Macro Instructions).

This message is followed by the IEC141I 013-xx
message of the data management system, whereby
the DD name used by the program is output. The
message IEC161 may be output in connection with
VSAM accesses.

The reported FLAM message numbers are equal to the
numbers in FLAM utility (ch. 8 in the manual
FLAM(MVS)).

Here some examples:

no:

-1 Not enough memory (license rights
may have been violated)

10 The file is not a FLAMFILE (input or
I/O)

11 FLAMFILE format error
12 Record length error
13 File length error
14 Checksum error
21 Illegal matrix buffer
22 Illegal compression method
23 Illegal CODE in FLAMFILE
24 Illegal BLOCKMODE
25 Illegal record length
31 File not assigned (DD statement

missing)
33 Invalid file type
34 Invalid record format
35 Invalid record length
36 Invalid block length
40 Cannot load module or table

(TRANS parameter)
60 - 78 FLAM syntax error
120 Name generation in error.

Generating a new file name is
impossible due to the lack of digit
numbers in the name (i.e. only 1
digit number is in the name, cannot
generate more than 9 file names).

121 One fragment of the splitted
FLAMFILE is missing.

122 Sequence check error of a serially
splitted FLAMFILE. The fragments
are not in ascending order.

123 Fragments of the splitted FLAMFILE
do not belong together.

4 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 8 Subsystem messages

124 The FLAMFILE was split in more
fragments than the actual version
can handle.

130 Security violation: FLAMFILE is not
in original state during read (i.e
concatenation of FLAMFILEs,
updates, inserts). Allowed to be
ignored (SEC=IGNORE).

131 Missing records in a FLAMFILE.
Allowed to be ignored.

132 A member was inserted into a
group FLAMFILE. Allowed to be
ignored.

133 Sequence error: FLAMFILE records
are not in ascending order. Allowed
to be ignored.

134 Security error: FLAMFILE starts
without security information but
then one were found. Cannot be
ignored.
Perhaps concatenation of
FLAMFILEs without and with
security information.

531 Some fragments missing during
decompression and parallel split.

Response: If RC = -1 and correct license,
specify a higher value for REGION
in the EXEC statement; if RC = 11 -
14, the file is no longer available in
its original state, the data contents
have been modified (possibly by a
file transfer program) or another
type of error has occurred and
must be rectified by following the
instructions provided (see also
manual for FLAM V4.x, Chapter 8).
Some security violations are
allowed to be ignored, but take
care of the situation.

FLM0541O ALLOCATION FAILED FOR DSN filename
SVC99 ERROR CODE = no1. INFO CODE = no2.

An error was detected when an attempt was made to
allocate the file filename dynamically. The codes are
specified in hexadecimal format.

Response: Analyse the error and info codes of
the SVC99 as described in the
manual ('MVS Authorized
Assembler Services Guide, GC28-
1763').

e.g. error code = 1708, info code = 2 or 5 means: File is
not cataloged (remember: only cataloged files are
allowed using FLAM-sub).

FLAM®-sub V4.7 (MVS) 5
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Subsystem messages Chapter 8

FLM0543O TRANSLATE-PARAMETER INVALID WITH OPEN I/O –
IGNORED

The TRANSLATE parameter is ignored in connection
with an OPEN I/O.
Input and output records can only be translated
according to the specified table with an OPEN INPUT
or an OPEN OUTPUT.

Processing continues without translating the data.

FLM0544O FORCED BY PARAMETER TO ACCESS AS UN-
COMPRESSED DATA

No FLAMFILE was identified when a subsystem file was
opened (message: FLM0440O with RC=10). The set
subsystem parameter IG10 forces processing to
continue on the basis of an uncompressed (original)
file.

Important: If there is no original (uncom-
pressed) file, unpredictable errors
may occur.

FLM0552D I/O ERROR. DDNAME = ddname. RC = no (FLAM)/(VSAM)
file-name

An error was detected by the FLAM subsystem while
reading or writing in the specified file file-name. FLAM
return codes are specified in decimal or hexadecimal
format and VSAM errors in hexadecimal format.

This message may be followed by the IEC020I 001-..
message of the data management system.

You can find a list of VSAM return codes in the manual
entitled 'DFSMS Macro Instructions'.

All FLAM return codes are listed in the FLAM-utility
manual (ch. 8), but here some examples:

no:

11 FLAMFILE format error
12 Record length error
13 File length error
14 Checksum error

If one of the above codes is returned, the data in the
FLAMFILE has been mutilated (e.g. as a result of a file
transfer).

7 Password not declared
15 Record length greater than 32 KB
16 Record length greater than MAXB - 4
25 Illegal record length
29 Password in error

6 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 8 Subsystem messages

123-134 see FLM0540O

Detecting a security violation the FLAM error code is
reported as a hexadecimal value (nnmmmm). nn
describes, where the error was detected:

01 Header
02 Segment
03 Membertrailer
04 Filetrailer

Mmmm is the error

0001 MAC1, the data MAC
0002 MAC2, the chaining MAC
0003 MAC3, the MAC over MACs
0010 data missing
0020 data inserted
0040 data updated
0080 record counter compressed data
0100 byte counter compressed data
0200 record counter original data
0400 byte counter original data
0800 chaining on FLAM encryption

The error codes are or'd, e.g. 030180 means: record
and byte counter of the compressed data do not fit
with the stored information, detected in the member
trailer.

It is allowed to ignore these violations (SEC=IGNORE),
but take care of the situation.

FLM0553D NO MEMORY RECEIVED FOR I/O OPERATIONS

A subsystem module was not allocated any memory by
the operating system. Consequently, no other
information is available.

Response: Specify a higher value for REGION
in the EXEC statement.

FLM0570E CLOSE ERROR. DDNAME = ddname. RC = no
file-name

An error was detected when an attempt was made to
close the specified file.

Since compressed-file records may have to be written
as well when a file is closed, see also FLM0552D
message.

FLAM®-sub V4.7 (MVS) 7
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 9:

Installing FLAM®-sub

Chapter 9 Installing FLAM®-sub

9. Installing FLAM®-sub

The software may be downloaded from the FLAM
homepage via internet.

README files are stored to guide the installation.

Manuals are provided as PDF-files to read the
documents on an appropriate system (e.g. Unix,
Windows).

It is allowed to copy and print the documents as often
it is needed, but for internal use only.

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Installing FLAM®-sub Chapter 9

9.1 LINKLST and authorization

The programs of the subsystem must be stored in an
APF-authorised load library. This library must be linked
to the system library SYS1.LINKLIB. The subsystem also
reloads modules belonging to the FLAM utility at the
time of the OPEN. The library of the FLAM utility must
therefore be APF-authorised as well.

We recommend keeping all the load modules of FLAM-
sub and FLAM-utility in a common library and using
only this library.

The following entries are necessary in the
SYS1.PARMLIB library for this purpose (see also z/OS
Initialisation and Tuning Reference). xx is the serial
number of your active system generation.

There is more than one method, to link a LOAD library
to LINKLST.

a) To generate a link to the system library, insert the
following line in the member LNKLSTxx:

SYS1.FLAMLIB,

Libraries which are concatenated in this way are
normally APF-authorised as default. If not, they can be
authorised by inserting the following line:

SYS1.FLAMLIB volume,

in the member IEAAPFxx,

where volume is the name of the disk on which the
SYS1.FLAMLIB library is stored (if this entry is the last in
the member, the comma must be omitted).

b) Insert some lines into the PROGxx member:

LINKLST ADD
NAME(LINKLSTxx)
DSNAME(flamlib)
VOLUME(volume)

And
APF ADD

DSNAME(flamlib)
VOLUME(volume)

Many variants exist for this member, this is only one
example.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 9 Installing FLAM®-sub

9.2 Subsystem Start

There a two ways do start the subsystem. Defining a
static subsystem that cannot be changed during the
IPL session, and defining the more flexible dynamic
subsystem via a started task.

a) The FLAM subsystem is initialized during a system
IPL.

The following line must be inserted in the member
IEFSSNxx of the SYS.PARMLIB library for this purpose:

FLAM,FLSSIPL

This entry must not precede the line containing 'JES'.

The order of the entries depends on how often the
programs are called. The more frequently they are
called, the higher up the entries should be inserted in
the first third of the member.

The FLAM subsystem becomes available after the next
system IPL, or you can use the console command:

SETSSI ADD,S=FLAM,I=FLSSIPL

to start FLAM subsystem manually without an IPL.

Note: you can't deactivate the subsystem and change
any modules during the session.

b) A started task to activate FLAM subsystem is
supplied.

The operator starts the subsystem entering

S FLAM

from the console.

If you insert the line

COM='S FLAM'

into the member COMMNDxx, the subsystem starts
automatically without an operator interaction during
the next IPL.

FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Installing FLAM®-sub Chapter 9

You can stop the subsystem with

P FLAM

And

F FLAM,VER

shows the version of all subsystem modules.

Stopping the subsystem, changing the FLAM-modules
in the library (don't forget the LLA REFRESH!) and
starting the subsystem again enables an easy way to
update the subsystem.

4 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

FLAM®-sub (MVS)

User Manual

Chapter 10:

Examples

Chapter 10 Examples

10. Examples

10.1 Input/output with cataloged files

The USER.EXAMPLE.INPUT file has been created as a compressed file (FLAMFILE),
for example with the FLAM utility. It must now be read by another program. The
USER.EXAMPLE.OUTPUT file was created by this program previously and must
now likewise be compressed. Both files are cataloged.

Two different procedures are possible.

a) When the file was opened, the program specified the record and block lengths
in the ACB or the DCB (or in the FD section if COBOL programs are used).

Solution: The SUBSYS specification in the DD statement is sufficient.

//stepname EXEC PGM=program
//INPUT DD DSN=USER.EXAMPLE.INPUT,
// DISP=SHR,
// SUBSYS=FLAM
//OUTPUT DD DSN=USER.EXAMPLE.OUTPUT,
// DISP=OLD,
// SUBSYS=FLAM

Since the "correct" values are specified in the calling program, the data records
are transferred to or from the subsystem in accordance with them.

b) The calling program assumes that an "original" catalog entry exists, i.e. neither
a record length nor a block length is specified in the program (IEBGENER, SORT
and numerous utilities function in this way).

Solution: Specify additional DCB attributes in the DD statement.

//stepname EXEC PGM=program
//INPUT DD DSN=USER.EXAMPLE.INPUT,
// DISP=SHR,
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=3025),
// SUBSYS=FLAM
//OUTPUT DD DSN=USER.EXAMPLE.OUTPUT,
// DISP=OLD,
// DCB=(RECFM=VB,LRECL=438,BLKSIZE=4096),
// SUBSYS=FLAM

The program is presented with the specified DCB attributes, irrespective of the
actual catalog entry. The subsystem transfers records in accordance with these
specifications. FLAM, on the other hand, reads or writes compressed-file records
on the disk in cataloged format.

The subsystem activity is confirmed by the system messages in the JCL listing.

IEF237I FLAM ALLOCATED TO INPUT
IEF237I FLAM ALLOCATED TO OUTPUT
 .
 .
IEF285I USER.EXAMPLE.INPUT SUBSYSTEM
IEF285I USER.EXAMPLE.OUTPUT SUBSYSTEM

FLAM®-sub V4.7 (MVS) 1
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Examples Chapter 10

10.2 FLAM parameters and subsystem

Cf. example 1, except that a specific compression method (ADC) must be set for
the output file.

Solution:

Enter the necessary parameters in the SUBSYS specification of the DD statement.

//stepname EXEC PGM=program
//INPUT DD DSN=USER.EXAMPLE.INPUT,
// DISP=SHR,
// SUBSYS=FLAM
//OUTPUT DD DSN=USER.EXAMPLE.OUTPUT,
// DISP=OLD,
// SUBSYS=(FLAM,'MO=ADC')

The FLAM utility and the 'D,SHOW(ATT)' parameters or the I OPTION in the FLAM
panels allow you to check whether or not the compression procedure is
successful.

10.3 Creating a new file

A file called USER.EXAMPLE.NEWDAT must be created. It is not cataloged:

//OUTPUT DD DSN=USER.EXAMPLE.NEWDAT,
// DISP=(NEW,CATLG,),
// UNIT=SYSDA,SPACE=(CYL,(24,24)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=3025)

Solution: Specify a second DD statement for FLAM-sub.

The original file description is given a new DD name, to which a FLAM parameter
in the SUBSYS specification refers.

//OUTPUT DD SUBSYS=(FLAM,'FLAMDD=NEWDAT'),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=3025)
//NEWDAT DD DSN=USER.EXAMPLE.NEWDAT,
// DISP=(NEW,CATLG,),
// UNIT=SYSDA,SPACE=(CYL,(6,6)),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=3025)

The compressed file USER.EXAMPLE.NEWDAT is thus created exactly the same as
the original. The advantage of this method is that any subsequent copy or transfer
programs which function without the SUBSYS specification will find the same
catalog entry as for the original and therefore do not need to be specially tuned.

The new DD statement requires the DCB specification, since it was also mandatory
in the original.

2 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 10 Examples

Otherwise, the compressed file can be set in any way, e.g.:

//OUTPUT DD SUBSYS=(FLAM,'FLAMDD=NEWDAT'),
// DCB=(RECFM=FB,LRECL=121,BLKSIZE=3025)
//NEWDAT DD DSN=USER.EXAMPLE.NEWDAT,
// DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(6,6)),
// DCB=(RECFM=FB,LRECL=1024,BLKSIZE=26624)

As far as the calling program (and the subsystem) is concerned, the original
records are 121 bytes long.

The FLAMFILE, on the other hand, has longer records and blocks for performance
reasons (this is the normal, recommended case).

The file descriptions can thus be separated from one another.

10.4 Temporary files

FLAM-sub cannot process any temporary files directly. A second DD statement is
necessary for this purpose.

//DDNAME DD SUBSYS=(FLAM,'FLAMDD=tempfile')
//tempfile DD DSN=&&file,DISP=...

It is not necessary to specify a file name on account of the FLAMDD specification
for DDNAME. A temporary file name is generated automatically by JES. FLAM-sub
branches directly to the temporary file.

10.5 Other subsystems

Other subsystems, such as JES for SYSOUT/SYSIN, must be activated by means of a
second DD statement.

//DDNAME DD SUBSYS=(FLAM,'FLAMDD=subfile')
//subfile DD SYSOUT=A,DEST=(....),...

Depending on the program which is used, it may be necessary to specify DCB
parameters in order to process the original file (DDNAME statement, cf. example
1).

10.6 Loading a VSAM-KSDS file

If a KSDS file is loaded, the file is opened for writing (OUTPUT). The keys must be
transferred to VSAM in ascending order (this is also checked by FLAM-sub).

It is possible to load the file in I/O mode, in other words it must contain at least
one record. At the same time, this leads to a deterioration in performance and an
increase in the number of accesses.
FLAM®-sub V4.7 (MVS) 3
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Examples Chapter 10

The file itself is normally created using IDCAMS and is already cataloged when the
job is executed.

The simplest method is to create a compressed KSDS file with the FLAM utility.

10.6.1 Load a real VSAM-KSDS file

A 'real VSAM-KSDS file' means, an ACB is provided to open the data set.

When the file is loaded via the subsystem, the key description of the original data
must be specified in the form of parameters:

//OUTPUT DD DSN=USER.EXAMPLE.OUTPUT,
// SUBSYS=(FLAM,'OKEYPOS=21,OKEYLEN=64,MAXS=7168'),
// DCB=(LRECL=512,BLKSIZE=20480)

The original records are up to 512 bytes long in this example, while the control
interval takes up 20480 bytes and the key begins at position 21 and is 64 bytes
long.

The subsystem should use the full record length of the VSAM file (7168 bytes).

Note: FLAM counts the key position starting at 1 (corresponds to RKP=0).

The VSAM file itself requires the entries (see also 'Preconditions') for the example:

KEYS(65 0)
RECSZ(7168 7168)

Important: Even if a higher value is specified for RECSZ, the FLAMFILE record
length is restricted to 7168 bytes by the MAXS parameter.

Note:

A VSAM file must be empty when it is loaded, in other words either it must not
contain any records or the REUSE parameter must have been specified for
IDCAMS, to allow the file to be overwritten.

10.6.2 Load a VSAM-KSDS file via an utility

Most utilities (like IEBGENER or SORT) use a DCB to access a subsystem data set.
FLAM subsystem then normally declares the data as physical sequential (PS) and
has no knowledge about a key description.

Subsystem parameter overwrite this situation and force the subsystem to
recognize the output data as key sequenced records:

//OUTPUT DD DSN=USER.EXAMPLE.OUTPUT,
// SUBSYS=(FLAM,'ODSORG=KSDS,OKEYPOS=21,OKEYLEN=64,MAXS=7168'),
// DCB=(LRECL=512,BLKSIZE=20480)

The original records are up to 512 bytes long in this example, while the control
interval takes up 20480 bytes and the key begins at position 21 and is 64 bytes
long.

4 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 10 Examples

The subsystem shall use the full record length of the VSAM-KSDS file
USER.EXAMPLE.OUTPUT (7168 bytes).

Note: FLAM counts the key position starting at 1 (corresponds to RKP=0).

The VSAM file USER.EXAMPLE.OUTPUT itself requires the entries (see also
'Preconditions') for the example:

KEYS(65 0)
RECSZ(7168 7168)

Important: Even if a higher value is specified for RECSZ, the FLAMFILE record
length is restricted to 7168 bytes by the MAXS parameter.

Note:
FLAM subsystem checks the ascending order of the key sequence of the output
records and returns the VSAM return code, if in error. The utility normally is
unaware of this situation and returns a 'WRITE ERROR' without any further
information.

10.7 TRACE function

A trace function is activated for both the input file and the output file for test
purposes:

//INPUT DD DSN=filename1,SUBSYS=(FLAM,TRACE)
//OUTPUT DD DSN=filename2,
// SUBSYS=(FLAM,TRACE,'MSGDDN=FLTRACE')
//*
//FLPRINT DD SYSOUT=*
//FLTRACE DD DSN=filename3,DISP=(NEW,CATLG),
 SPACE=(TRK,(12,12),RLSE),UNIT=SYSDA

Different files must be specified for the trace. FLTRACE is the assignment for the
OUTPUT file trace. FLPRINT is taken as the default name, since no parameter has
been specified in the DD statement.

The trace for INPUT is as follows (the records have been shortened here):

FLAM - TRACE FUNCTION - COPYRIGHT 2012 BY LIMES DATENTECHNIK GMBH

ACB DURING OPEN: 009E13A0
 (A000004C 00000000 00000000 54000000 00000000 00000000 48900008 0000000
 00000000 00000000 002C0041 009E12A8 03000000 0000521C 00000000 0C30005
 00000000 00000000 00000000)

 FLMOPN, ON ENTRY:
 1:03700C04(037008A0) 2:03700C08(8349A192) 3:0349AA90(00000001) 4:0349AA
 FLMOPN, ON RETURN:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:0349AA90(00000001) 4:0349AA
 FLMOPD, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:0349AA90(00000001) 4:03700C
 5:03700CC4()
 6:03700C20(00000000) 7:03700C24(00000009) 8:03700C28(00000200) 9:03700C
 10:03700C5C(00000000 00000000
 00000001 00000008 00000000 00000000 00000000 00000000 00000000 000000000

FLAM®-sub V4.7 (MVS) 5
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Examples Chapter 10

 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 11:03700C34(00001800) 12:03700C38(00000000) 13:03700C3C(00000000)
 FLMOPD, ON RETURN:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:0349AA90(00000001) 4:03700CC
 5:03700CC4()
 6:03700C20(00000000) 7:03700C24(00000008) 8:03700C28(00000100) 9:03700CC
 10:03700C5C(00000000 00000000
 00000000 00000000 00000001 00000000 00000000 00000000 00000000 000000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 11:03700C34(00001800) 12:03700C38(00000000) 13:03700C3C(00000000)
 FLMOPF, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:03700C40(00000000) 4:03700C4
 7:03700C50(00000001) 8:03700C54(000000FF) 9:03700C5C(00000000 00000000
 00000001 00000008 00000001 00000000 00000000 00000000 00000000 000000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 10:03700C58(00000001) 11:03700CC4() 12:03700CC()
 FLMOPF, ON RETURN:

 1:03700C04(0372CD88) 2:03700C08(00000000) 3:03700C40(000000C8) 4:03700C4
 7:03700C50(00000001) 8:03700C54(000000FF) 9:03700C5C(00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 10:03700C58(00000001) 11:03700CC4() 12:03700CC()
 FLMGHD, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:03700E54(00000036)
 4:03700E58(FLAM.DAT.CMP)
 5:03700E4C(00000000) 6:03700E48(00000009) 7:03700E3C(00000050) 8:03700E0
 9:03700C5C(00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 10:03700E40(00000C30) 11:03700E38(00000000) 12:03700E28(01010000)
 FLMGHD, ON RETURN:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:03700E54(0000001C)
 4:03700E58(FLAM.FLAMV27C.CLIST(ORGFLAM))
 5:03700E4C(00000000) 6:03700E48(00000009) 7:03700E3C(00000050) 8:03700E0
 9:03700C5C(00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000
 10:03700E40(00000C30) 11:03700E38(00000000) 12:03700E28(01010000)
 I/O-REQUEST: 00000000 GET
 ACB: 000052F0
 (A000004C 000147C0 8003E170 54000000 00000000 00000000 48900008 0000000
 00000000 00000000 002C0041 009E12A8 12000000 0000521C 00000000 0C30005
 00000000 00000000 00000000)
 RPL: 00005390
 (0000004C 00000000 00000000 00000000 00000000 00000000 000052F0 0000000
 00045E5C 00000000 20000000 00000000 00000050 00000050 00000000 0000000
 00000000 00000000 000053EC)
 FLMGET, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:000053C0(00000050)
 4:00045E5C(
 5:000053C4(00000050)
 FLMGET, ON RETURN:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:000053C0(00000050)
 4:00045E5C(PROC 0
 5:000053C4(00000050)
 I/O-REQUEST: 00000000 GET
 ACB: 000052F0

6 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 10 Examples

 (A000004C 000147C0 8003E170 54000000 00000000 00000000 48900008 000000
 00000000 00000000 002C0041 009E12A8 12000000 0000521C 00000000 0C3000
 00000000 00000000 00000000)
 RPL: 00005390
 (0000004C 00000000 00000000 00000000 00000000 00000000 000052F0 000000
 00045EAC 00000000 20000000 00000000 00000050 00000050 00000000 000000
 00000000 00000000 000053EC)
 FLMGET, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000000) 3:000053C0(00000050)
 4:00045EAC(
 5:000053C4(00000050)
 FLMGET, ON RETURN:

1:03700C04(0372CD88) 2:03700C08(00000000) 3:000053C0(00000050)
 4:00045EAC(CONTROL NOLIST NOSYMLIST NOCONLIST NOFLUSH NOMSG NOCAPS
 5:000053C4(00000050)
 .
 .
 FLMCLS, ON ENTRY:
 1:03700C04(0372CD88) 2:03700C08(00000002)
 FLMCLS, ON RETURN:
 1:03700C04(FFFFFFFF) 2:03700C08(00000000)

The names of the FLAM functions (FLMOPN, FLMGET, etc.) and their parameters
are equal to those listed in the manual for FLAM V4 (Chapter 3, Interfaces). The
parameters are numbered in the same way as in the manual. The next
specification is the parameter address. The parameter contents are enclosed in
parentheses '()'.

The control blocks ACB and RPL are specified by the subsystem interface, even if a
PS file is accessed.

Please refer to the IBM manuals for further details of these control blocks, e.g.
'Macro Instructions for VSAM Data Sets', 'Data Areas', or to the
'SYS1.AMODGEN(IFGACB)' and 'SYS1.AMODGEN(IFGRPL)' macros.

10.8 FLAMFILE split

10.8.1 Serial split

To split a file in several fragments, depending on the amount of data, the serial
split is used.

//output DD DSN=FLAM.SUBDAT.A01.ADC,
// SUBSYS=(FLAM,'MO=ADC,SPLITM=SER,SPLITS=200')

The file FLAM.SUBDAT.A01.ADC is cataloged, the filename has two numeric
characters (at least 1 numeric character is necessary). Compression method ADC is
used for higher compression. One file must not exceed 200 MB data.

When more than 200 MB data are to be written, file FLAM.SUBDAT.A01.ADC is
closed and file FLAM.SUBDAT.A02.ADC is searched and allocated, or if not found in
the catalog, created. With two numeric characters it is possible to generate up to
99 files.

FLAM®-sub V4.7 (MVS) 7
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Examples Chapter 10

If your organisation requires special filenames or a higher flexibility for data set
allocation is needed, assigning with DD-names is recommended. Only the first DD-
name is passed to the subsystem.

//output DD SUBSYS=(FLAM,'SPLITM=SER,SPLITS=200,FLAMDD=CMP01')
//*
//CMP01 DD DSN=filename1,DISP=OLD
//CMP02 DD DSN=filename2,DISP=OLD
//CMP03 DD DSN=filename3,DISP=(NEW,CATLG),
// UNIT=TAPE,...

All files must have the same record length, but the data set organization or format
may differ.

When more than 200 MB are to be written, the file with DD-name CMP01 is closed
and CMP02 is opened.

To read a splitted FLAMFILE it is not necessary to pass any parameter to the
subsystem. The filename of the first fragment is named in the DD-statement:

//input DD DSN=FLAM.SUBDAT.A01.ADC,
// SUBSYS=FLAM

all following files will be allocated dynamically by the subsystem.

Assigning files via DD-statement is possible as well. The DD-name must have at
least one numeric character, the first name is passed to the subsystem:

//input DD SUBSYS=(FLAM,'FLAMDD=CMP01')
//*
//CMP01 DD DSN=filename1,DISP=SHR
//CMP02 DD DSN=filename2,DISP=SHR
//CMP03 DD DSN=filename3,DISP=SHR

Note:

The files must be assigned in the same order than they were written. The
subsystem checks the sequence of the files. In case of errors, message FLM0540O
and RC=122 is reported and the data management system detects an open error.

10.8.2 Parallel split

Parallel split means: up to 4 files are written or read "simultaneously".

All files must be cataloged and assigned within JCL! Therefore it is necessary to
assign the subsystem files via the DD-statement. The DD-name must have at least
one numeric character, the first name is passed to the subsystem.

//output DD DSN=any,
// SUBSYS=(FLAM,'MO=ADC,SPLITM=PAR,SPLITN=3,FLAMDD=CMP01')
//*
//CMP01 DD DSN=filename1,DISP=OLD
//CMP02 DD DSN=filename2,DISP=OLD
//CMP03 DD DSN=filename3,DISP=OLD

All files must have the same record length, but the data set organization or format
may differ.
8 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 10 Examples

JCL required for reading a split FLAMFILE in parallel:

//input DD DSN=any,
// SUBSYS=(FLAM,'FLAMDD=CMP01')
//*
//CMP01 DD DSN=filename1,DISP=SHR
//CMP02 DD DSN=filename2,DISP=SHR
//CMP03 DD DSN=filename3,DISP=SHR

The files may be in different order than they were written, the subsystem uses the
original order automatically.

Note:

If one file is missing, message FLM0540O with RC=531 is reported by the
subsystem and the data management system detects an OPEN-error.

Using DISP=NEW in the assigned DD-statements will lead to a system error 50D,
so it is really necessary to catalog all files.

10.9 Encryption

10.9.1 Encryption via CRYPTOKEY parameter

To encrypt/decrypt the file a key is passed (CRYPTOKEY=...) to the subsystem. The
cryptographic method is choosed by parameter CRYPTOMODE. Without this
parameter, method FLAM is used (compatible to FLAM-sub V3)

//DDNAME DD DSN=filename,
// SUBSYS=(FLAM,'CRYPTOM=AES,CRYPTOK=OTTO')

Using parameter PASSWORD instead of CRYPTOKEY is allowed and compatible to
FLAM-sub V3.

Please remember: any apostrophes contained within the parameter string literal
must be duplicated:

//DDNAME DD DSN=filename,
// SUBSYS=(FLAM,'CRYPTOM=AES,CRYPTOK=X''AE01EA''')

10.9.2 Encryption via KME-module

A program name that supports the KME-interface (-> manual FLAM (MVS) V4.x, ch.
3.5.5), will be used as followed

//DDNAME DD DSN=filename,
// SUBSYS=(FLAM,'CRYPTOM=AES’,
// ’KME=name,KMP=C’’parameter for KME’’’)

This method benefits from a fully automatic encryption/decryption without any
manual user action. The key used for encryption is never seen in any protocol.

FLAM®-sub V4.7 (MVS) 9
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Examples Chapter 10

10.9.3 Encryption using FKMEFILE

Program FKMEFILE is an example for using the KME interface. It reads a
record containing a key from a sequential file and returns it to the
subsystem. A parameter ddname is needed for the file to read.

The key must be the first record of the file. The syntax is as of parameter
CRYPTOKEY: the key may be a string, a C'string with blanks', a A'key in ascii',
or a X'hexvalue'. Trailing blanks are ignored.

 //DDNAME DD DSN=filename,
// SUBSYS=(FLAM,’CRYPTOM=AES’,
// ’KME=FKMEFILE,KMP=C’’ddname1’’’)
//* THIS is the key-file
//ddname1 DD DSN=keyfilename,DISP=SHR

Just to test it on the fly

//ddname DD *
C'this is my key'
/*

10 FLAM®-sub V4.7 (MVS)
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

Chapter 10 Examples

10.10 Using zEDC

10.10.1 Automatically

With MODE=ADC the zEDC accelerator card zEDC will be used, when it is installed.
Nothing else is to be done.
On decompression: if no card is found and the compression mode was zEDC a
software routine decompresses the FLAMFILE.

//DDNAME DD DSN=filename,SUBSYS=(FLAM,’MODE=ADC’)

10.10.2 Never

Setting an environment variable for the actual job, the zEDC algorithm will not be
used, although the card was found.

//DDNAME DD DSN=filename,SUBSYS=(FLAM,’MODE=ADC’)
//CEEOPTS DD *
 ENVAR(''FL_ZEDC_SUPPORT=OFF'')
/*

Same for all jobs when a system variable is defined in SYS1.PARMLIB(IEASYMxx):

SYMDEF(&FLZEDC=’OFF’)

10.10.3 Always zEDC

Setting an environment variable for the actual job, the zEDC algorithm will be
used, although the card was not found.

//DDNAME DD DSN=filename,SUBSYS=(FLAM,’MODE=ADC’)
//CEEOPTS DD *
 ENVAR(''FL_ZEDC_SUPPORT=ON'')
/*

Same for all jobs when a system variable is defined in SYS1.PARMLIB(IEASYMxx):

SYMDEF(&FLZEDC=’ON’)

FLAM®-sub V4.7 (MVS) 11
Frankenstein-Limes-Access-Method © 2017 by limes datentechnik gmbh

