

FLAM

FRANKENSTEIN-LIMES-ACCESS-METHOD

(UNIX)

USER MANUAL

— Edition April 2006 Version 4.1 —

© Copyright 1989-2006 by limes datentechnik® gmbh

�
 Philipp-Reis-Passage 2

�
 D-61381 Friedrichsdorf/Ts.

Telephone ++49 6172 / 5919-0
�

 Telefax ++49 6172 / 5919-39
http://www.flam.de

�
 http://www.limes-datentechnik.de

User Manual FLAM V4.1 (UNIX)

© Copyright by limes datentechnik gmbh

All rights reserved. The reproduction, transmission or use of this document
is not permitted without express written authorization.

Offender will be liable for damages.

Delivery subject to availability, right of technichal modifications reserved.

 Contents

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Contents

 Contents

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

iii

Contents

Chapter 1 1. FLAM Overview 1- 3

 1.1 Mode of Operation 1- 4

 1.2 Compression Modes 1- 4

 1.3 Matrix Buffer and Number of Records 1- 5

 1.4 The FLAMFILE 1- 6

 1.4.1 Structure of the FLAMFILE 1- 6

 1.4.2 The FLAM File Header 1- 7

 1.4.3 Secure FLAMFILEs 1- 8

 1.5 Interfaces 1- 9

 1.5.1 The flam Command 1-10

 1.5.2 The flamup Subprogram 1-11

 1.5.3 The flamrec Record Interface 1-11

 1.5.4 The User-Defined Input/Output 1-12

 1.5.5 The User Exits 1-14

 1.5.5.1 File Access Exits 1-14

 1.5.5.2 User Exit for Automatic
 Key Management 1-15

Chapter 2 2. The flam Command 2- 3

 2.1 Functions 2- 3

 2.2 Command Syntax 2- 4

 2.2.1 FLAM Compression 2- 5

 2.2.2 FLAM Decompression 2- 6

 2.2.3 Displaying the FLAM Default Values 2- 7

 2.2.4 Setting the FLAM default Values 2- 7

 2.3 flam Command Parameters 2- 7

 -attributes 2- 8

 -compress 2- 9

 -decompress 2- 9

 -defaults 2-10

 -delete 2-13

Contents

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

iv

 -flamcode 2-14

 -flamfile 2-15

 -flamin 2-16

 -flamout 2-16

 -indelete 2-17

 -inrecdelim 2-18

 -inrecformat 2-19

 -inrecsize 2-20

 -kmexit 2-21

 -list 2-22

 -maxbuffer 2-23

 -maxrecords 2-24

 -mode 2-25

 -msgfile 2-26

 -ndc 2-27

 -option 2-28

 -outrecdelim 2-29

 -outrecformat 2-29

 -outrecsize 2-30

 -pad_char 2-30

 -parfile 2-31

 -password 2-32

 -recdelim 2-33

 -recformat 2-34

 -recsize 2-35

 -show 2-36

 -translate 2-39

 2.4 File Specifications 2-40

 2.4.1 Input Specifications 2-40

 2.4.2 Output Specifications 2-41

 2.4.3 Assignment of Input Specifications
 to Output Specifications 2-42

 2.5 Priority Rules for FLAM Settings 2-44

 2.6 The FLAM Parameter File 2-46

 2.7 The FLAM Default Values 2-48

 2.8 Alternative Parameter Names 2-49

 Contents

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

v

Chapter 3 3. Calling flamup 3- 3

 3.1 The flamup Calling Sequence 3- 3

 3.2 FLAM Parameters in the flamup
 Subprogram Call 3- 5

 exd10 3- 7

 exd20 3- 7

 exk10 3- 8

 exk20 3- 8

 inuser_io 3- 9

 outuser_io 3- 9

 user_io 3-10

 3.3 Linking flamup 3-11

Chapter 4 4. The Record Interface 4- 3

 4.1 Functions of the Record Interface 4- 3

 4.2 Programming the Record Interface at
Compression 4- 4

 4.3 Programming the Record Interface at
Decompression 4- 5

 4.4 Description of flamrec Functions 4- 6

 flmcls 4- 7

 flmflu 4- 9

 flmget 4-11

 flmghd 4-12

 flmguh 4-15

 flmopd 4-16

 flmopf 4-18

 flmopn 4-21

 flmphd 4-23

 flmpos 4-25

 flmpuh 4-26

 flmput 4-27

 flmpwd 4-28

 4.5 Linking Record Interface Functions

 to Application Programs 4-29

Contents

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

vi

Chapter 5 5. The User Input/Output Interface 5- 3

 5.1 How to Use the User Input/
 Output Interface 5- 3

 usrcls 5- 5

 usrget 5- 6

 usropn 5- 7

 usrpos 5-10

 usrput 5-11

 5.2 Linking User Input/Output Routines
 to Application Programs 5-12

Chapter 6 6. The User Exits 6- 3

 6.1 User Exits for File Accesses
 (Access Exits) 6- 3

 6.1.1 Programming the Access Exits 6- 4

 exd10 6- 5

 exd20 6- 7

 exk10 6- 9

 exk20 6-11

 6.1.2 Linking File Access Exits to
 Application Programs 6-13

 6.2 The User Exit for Automatic
 Key Management (Key Exit) 6-13

 6.2.1 Programming the Key Exit 6-13

 kmfunc 6-14

 6.2.2 Creating a Key Exit 6-16

Chapter 7 7. Application Examples 7- 3

 7.1 Commands 7- 3

 7.2 Compressing 7- 3

 7.2.1 One File into One File 7- 3

 7.2.2 Several Files into One File 7- 3

 Contents

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

vii

 7.2.3 Several Files into Several Separate
 Files 7- 4

 7.3 Decompressing 7- 4

 7.3.1 One File into One File 7- 4

 7.3.2 One Compressed File, Comprising Several
 Original Files, into Separate Files, Each
 Identical to One of the Original Files 7- 4

 7.3.3 Several Files into one File 7- 4

 7.3.4 Several Files into Several Separate
 Files 7- 5

 7.4 How to Use a Parameter File 7- 5

 7.5 How to Use the Subprogram
 Interface 7- 6

 7.6 How to Use the Record Interface 7- 9

 7.6.1 Compressing a File 7- 9

 7.6.2 Decompressing a File 7-14

 7.7 User-Defined Input/Output 7-19

 7.7.1 Opening a File 7-19

 7.7.2 Reading a File 7-22

 7.7.3 Writing a File 7-23

 7.7.4 Closing a File 7-24

 7.8 User Exits 7-25

 7.8.1 Selecting Records of a Particular
 Type from a File with exk10 and
 Compressing Them 7-25

 7.8.2 Processing Records in a Compressed
 File with exd10 7-26

 7.8.3 Swapping Two Bytes with exk20 during
 Compression 7-27

 7.8.4 Swapping Two Bytes with exd20 during
 Decompression 7-28

 7.8.5 Automatic Key Management Function 7-29

Appendix A Return Codes A- 3

Appendix B Code Tables B- 3

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 1:

FLAM Overview

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-3

1. FLAM Overview

FLAM is an implementation of the FLAM algorithms for
computers running under the UNIX operating system. Its
purpose is to compress and decompress files in a format
that allows easy exchange of data with numerous
computer types from a wide range of manufacturers.
Moreover, it offers the option of encrypting compressed or
uncompressed data.

 Its heterogeneous compatibility also renders FLAM
particularly suitable for long-term archiving of data, since
the reproducibility of this data is no longer tied to the life
cycle of a specific system. In addition, FLAM enables files
to be converted in almost any way, i.e. to files with a
different organization, a different record format or a
different character set.

The architecture of the software is layer-oriented, i.e. it is
made up of a series of hierarchically arranged functional
groups which are completely distinct from one another and
which communicate via defined interfaces. Since these
interfaces are open, it is up to the user to choose the
extent to which he wishes FLAM to be integrated in his
applications.

FLAM can be invoked either by means of a command or
by an application program via the corresponding interface.
Although FLAM is capable of compressing any type of file,
it was originally designed for files with a largely
standardized record structure and character-coded data. It
is most efficient at compressing such files. The above
requirements are normally satisfied if the processing
application programs are written in a high-level
programming language. This chapter attempts to assist
the user in deciding when, and if so how, FLAM can be
used effectively and with the optimum benefit.

The flam command may contain the necessary
information either in the form of parameters in the
command line itself or as FLAM parameters in a
parameter file, which is referred to by the parameter
parfile=parameter file. Chapter 2, "The flam command",
discusses these parameters in greater detail. Unless
otherwise explicitly mentioned, all the information in this
chapter relating to the use of parameters in the command
line applies equally to the parameters in the parameter
file.

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-4

1.1 Mode of Operation

When a file is being compressed with FLAM, one or more
original files are read record by record, and a compressed
(and optionally encrypted) file, called FLAMFILE, is
created. When a file is decompressed using FLAM, the
compressed file is read sequentially and one or more
decompressed files are created.

The compression process consists of a series of recurring
cycles. Each cycle generally entails reading a fixed
number of records in the original file; these records are
then buffered in the matrix buffer, compressed and output
in the form of a compressed block. The number of records
is between 1 and 255 or 4095, depending on the
compression mode used, and is specified when the
compression procedure is invoked. A compressed block
containing correspondingly fewer records is generated
when the end of the file is reached or if the matrix buffer
overflows.

The compressed blocks created by FLAM are written into
a sequential FLAMFILE.

By the record-oriented reading, the file's structural
information is preserved, which is of great importance for
reproducing the original file in computing environments
with data management systems.

Depending on the compression mode, each record in the
FLAMFILE is given either a binary checksum or a check
character, which is used to verify the integrity of the data
when the file is decompressed. The FLAMFILE can be
saved or exchanged with another computer. When the file
is decompressed, it may have a different organization, a
different record format or a different record size from the
original file, depending on the settings entered by the user
or on the default settings.

1.2 FLAM Modes

FLAM supports four compression modes: adc, cx7, cx8,
and vr8. In the adc, cx8, and vr8 modes, it creates the
FLAMFILE as a binary file. Mode adc is the most efficient
one. It compresses the datastream by removing the
redundancy of repetitive sequences and can be used
universally. The other modes mainly eliminate "vertical
redundancy", i.e. their efficiency relies on the recognition
of re-occurring column contents in table-structured data.

Compression mode adc can be combined with one of two
encryption methods supported by FLAM. The first is AES,
that has been declared standard for US government
agencies by NIST (National Institute of Standards and
Technology), the second is a proprietary algoriths of limes
datentechnik gmbh. The FLAM modes aes and flamenc,

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-5

respectively, correspond to these two combinations. None
of the other compression methods allows encryption.

In all binary modes the compressed information is largely
independent of the characteristics of the system on which
the compression took place, i.e. the FLAMFILEs must not
be modified, for example, if they are transmitted on a line
which translates codes automatically.

FLAMFILEs which are compressed in the cx7 mode, on
the other hand, are insensitive to code translations, since
they represent all control information by means of
alphanumeric characters, the codes for which are
standardized internationally in the ASCII and EBCDIC
systems. Providing the original data is character-coded
and suitable for exchange between systems with different
character sets,

the information content of the FLAMFILE remains fully
intact after it has been converted to the character set of
the destination system, despite the altered binary
contents, thanks to the character-oriented interpretation.

The compression mode is identified automatically when
the file is decompressed. The user thus does not need to
know the compression mode in order to decompress a file.

1.3 Matrix Buffer and Number of Records

The size of the matrix buffer and the number of records
which are stored there can be specified for the
compression procedure using the maxbuffer and
maxrecords parameters. As a general rule, the efficiency
of the compression procedure increases the more records
are compressed together in the same block. If there are
no other factors which need to be taken into account, it is
normally best to choose the highest possible number (255
or 4095, resp.). This preset number is, however, merely
an upper limit. There may be fewer records if the space in
the matrix buffer is exhausted or if the end of the original
file is reached.

The size which must be set for the matrix buffer is
dependent on the number and size of the records that
need to be buffered.The space requirement for files with
fixed-size records is calculated simply as the product of
the number of records and the record size. If the files have
a variable record size, it is not normally possible to predict
the memory requirement exactly. The value which is
chosen is bound to be approximate. However, the matrix
buffer must always be at least large enough to hold every
individual record in the file.

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-6

1.4 The FLAMFILE

1.4.1 Structure of the FLAMFILE

In order to achieve the aim of universal interchangeability,
the structure of the FLAMFILE must be such that it can be
represented in any operating system. This "least common
denominator" is the sequential file with fixed-size records.
Although other FLAMFILE record formats are allowed for
the FLAMFILE in addition to the fixed format, the
compressed data which is generated by the compression
procedure is broken down into "abstract" records - known
as FLAM records - with an identical size; these records
are then mapped to the "concrete" structures of the
installed operating system. In addition to the compressed
data, each FLAM record contains a FLAM record size field
at the beginning and either a checksum or a check
character at the end. The FLAM record size field and the
checksum or the check character are elements of the
FLAM syntax. This permits the start and end of a FLAM
record to be identified irrespective of the record format in
which the FLAMFILE has been stored by the operating
system.

In FLAM terminology, a FLAM record is the same as a
record if the FLAMFILE has fixed and variable record
formats. The specified FLAM record size is thus the same
as the record size or the maximum record size.

The residual data in a compressed block belonging to a
FLAMFILE is merged with the data in the next block to
form a FLAM record with the fixed or maximum size. With
the possible exception of the final record, all the FLAM
records have the same length. This enables optimum use
to be made of the storage medium; however, it is not
possible to assign the records of the original file to the
records of a FLAMFILE uniquely. A FLAMFILE of this type
can therefore only ever be decompressed in its entirety.

FLAM supports fixed and variable or stream record
formats for the FLAMFILE. Irrespective of the record
format, the minimum permissible size of a FLAM record is
80 bytes and the maximum size 32,760 bytes (4095 for
mode=cx7), providing a lower upper limit has not been set
by the user. This span is sufficient in practice to allow any
FLAMFILE to be transferred, even in situations where this
would not necessarily be the case with the original file,
owing to restrictions imposed on the record size or the
record format by the file transfer product.

Even though many data exchange problems can be
eliminated to a greater or lesser extent with the FLAM
concept, there are some which still cannot be solved. If a
file is unsuitable for uncompressed transfer with a
particular file transfer product, for example on account of
the binary data it contains, it will still not be possible to
transfer it after it has been compressed with FLAM, even if
it is compressed in the cx7 mode. The reason for this is
that every bit combination which occurs in the original file
also occurs in the FLAMFILE.

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-7

1.4.2 The FLAM File Header

In addition to the compressed data, a FLAMFILE may
contain other information which is stored in the FLAM file
header. FLAM distinguishes between two information
categories in two different types of file header:

Common information is stored in the common FLAM file
header. This includes all information about the original file,
such as the file organization, record format, length and
position of the primary key, etc., as well as details of the
FLAM version and the operating system in which the
FLAMFILE was created.

User-specific information of any kind is stored in the user-
specific FLAM file header. This header type can be
inserted additionally if the record interface is used, for
example for information which must be evaluated by the
application program.

Creation of the common FLAM file header is supported by
all interfaces (command, subprogram and record) by
means of parameters and arguments. A user-specific
FLAM file header can only be created if the record
interface is used. This interface incorporates the following
functions for creating and evaluating the various file
header types:

It is not mandatory to insert FLAM file headers in the
FLAMFILE. If they are inserted, it is essential to observe
the stipulated order when invoking the functions of the
record interface (see section 1.5.3 for further details).

FLAM file headers are always inserted in the FLAMFILE
directly preceding the compressed version of the file to
which they belong. If a FLAMFILE contains compressed
versions of several files, a FLAM file header can be
inserted in front of each compressed file.

When the files are decompressed, the compressed data
originating from different files can be distinguished and
decompressed into separate files.

FLAM file header type Created by Evaluated by

Common flmphd flmghd

User-specific flmpuh flmguh

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-8

1.4.3 Secure FLAMFILEs

Each record in a FLAMFILE is protected against
manipulations and transmission errors by an appended
checksum. In compliance with increased requirements
regarding cryptographic security, additional security
features for encrypted FLAMFILEs have been imple-
mented which improve the protection against a greater
variety of attacks. A FLAMFILE provided with these
features is called "Secure FLAMFILE".

The new protection mechanisms work on three levels
• the segment level,
• the member level, and
• the file level.

Here, "segment" denotes the compressed result of a
single matrix and "member" the entirety of segments from
a single original file.

In a Secure FLAMFILE, there are byte and record counts
both for each member as well as for the entire file,
members are numbered consecutively, and a timestamp
marks the creation time. When encrypted with AES, MACs
(Message Authentication Codes) are attached to the
FLAMFILE. Those are checksums calculated with a secret
key that allow verifying the authenticity of the data. A MAC
is calculated for each segment. To ensure the
completeness of a member, a second MAC is chained
through all segments of the same member, and a third
MAC, chained through all members of the FLAMFILE,
ensures the completeness with regard to the file. Similar
features are included when FLAMFILEs are created with
mode=flamenc.

To include the information necessary for these checks,
such as counts, timestamps, MACs, etc., a member
header is inserted in front of each member and each
member ist followed by a member trailer. In addition, a file
trailer is appended at the end of every Secure FLAMFILE.

Secure FLAMFILEs may not be concatinated since this
would create discontinuities of numbering, counters, and
MAC chainings that would make FLAM assume integity
violations and break off processing. Individual members of
a FLAMFILE, however, can be extracted, since checking
of the member chaining is suspended, whenever
members are skipped, and only the segment chaining is
then tested.

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-9

1.5 Interfaces

FLAM's various interfaces are extremely flexible.

FLAM can be embedded in user-defined applications or
vice versa by means of calls at different levels. The
available interfaces are listed in the table below:

These interfaces have a hierarchical order, which defines
which interface can be used or invoked from where. The
interfaces are subdivided into two categories: active and
passive.

Active interface calls are initiated either by the user or by
his application program; they activate the FLAM routines
which support them. These routines include the command
and the subprogram and record interfaces. FLAM uses
passive interfaces to activate user routines which are
required to perform a particular range of functions, but
whose calls are not synchronized with the logic of the
application program. This category includes the user-
defined input/output and the user exits.

The next few sections contain a brief description of the
ways in which the different interfaces can be used, without
covering every single detail. Each of the following
chapters contains a detailed description of one of the
interfaces and can be used as a reference document. All
the program interfaces, i.e. all interfaces other than the
command, are represented in C notation in the reference
chapters, and the C header file flamincl.h containing the C
constant definitions is provided for C programmers.

Interface Call level Purpose

FLAM
command

System Compress/decompress
entire files interactively
or in procedures

flamup
subprogram

Application
programs

Compress/decompress
entire files in user-
defined applications

flamrec
record
interface

Application
programs

Transfer and recall
individual records in
user-defined appli-
ations

User-defined
input/output

FLAM Replace FLAM
input/output routines

User exits FLAM User-defined file and
record preprocessing
and postprocessing for
compressed and non-
compressed data

Key management

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-10

However, these interfaces do not support C programs
only. Rather, they can be used with any programming
language, since all arguments are referenced by
addresses instead of the typical C referencing by values.

Even though, in a strict C context, a name without an "*"
operator still identifies the argument address with this form
of transfer, all references to such arguments in the
descriptions below in fact relate to the argument values.

1.5.1 The flam Command

The flam command can be used to compress or
decompress individual files or groups of files either
interactively or by means of procedures. The compress or
decompress parameter specifies which operation is to be
performed. All the information necessary to execute the
command can be specified in the form of inputs made
directly in the command line, in a parameter file or as
installation-specific default values.

If the flam command is specified with the list parameter, a
list of the currently active settings of the default values is
displayed; they can be modified by the system manager
using the -defaults parameter.

The flam command permits a separate FLAMFILE to be
created from each original file. It is also possible to
compress a group of original files into one FLAMFILE.

The input files which are compressed can either be named
explicitly or specified implicitly by means of patterns; either
explicit names or names formed using substitution rules
are allowed for the output files.

The same specification forms can also be used when the
files are decompressed; in addition, the special output
specification [] or [*] permits a file to be restored with its
original name and attributes.

The attributes of the decompressed file, such as its
organization and record format, may otherwise differ from
those of the original file.

FLAM can thus also be used for file conversions.

With the exception of the -list and -defaults parameters,
there are equivalent FLAM parameters for all the elements
of the command syntax, so that each setting can be
entered either directly in the command line or in a
parameter file which is referred to in the command by the
parameter parfile=parameter file. Using a parameter file
permits complicated keyboard inputs to be avoided, for
example if settings which differ from the installed default
values are required frequently.

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-11

1.5.2 The flamup Subprogram

The interface to the flamup subprogram permits roughly
the same operations as with the flam command to be
initiated in an application program.

This interface makes the same range of functions
available to the application programmer as to the user,
with the exception of the functions for listing and modifying
default settings. FLAM parameters are used to specify
these settings, similar to the procedure for the parameter
file. These parameters are specified consecutively in an
ASCII string, which is transferred to the subprogram in the
form of an argument. Once again, it is possible to refer to
a parameter file using the parameter parfile=parameter
file. If any information is omitted, the same default settings
are used as for the flam command.

When flamup has been executed in its entirety, the
invoking program receives a return code indicating either
the success of the call or the cause of the error.

1.5.3 The flamrec Record Interface

The flamrec record interface permits file processing and
compression to be integrated in an application program.
Decompressed records can be read sequentially from a
FLAMFILE. A new FLAMFILE is created when the
compressed data is output. A FLAMFILE can thus be
opened either for read accesses only (decompression) or
for write accesses only (compression).

FLAM's record interface consists of a class of functions,
which allow the application program to access and
process compressed data in the same way as is possible
with ordinary input/output instructions in the case of non-
compressed data. The use of these functions is governed
by rules similar to those which apply to the standard
input/output. After the file has been opened, records can
be read or written; the file is closed again when all
processing has been completed.

The compression or decompression that takes place
during processing is completely transparent to the
programmer, so that compared to programs using
conventional input/output operations, there are almost no
differences in the program logic.

By using the record interface, compressing (or decom-
pressing) the processed data no longer requires an extra
step after (or before) running the application. In addition, it
is no longer necessary to provide sufficient temporary
storage space for both the compressed and the
uncompressed copy of a file.

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-12

1.5.4 The User-Defined Input/Output

FLAM supports all inputs and outputs to and from disk
files using standard input/output instructions. However, it
also allows the user to replace these standard input/output
routines with routines of his own. This may be a good
idea, for example, if there is a possibility of an input/output
device other than a hard disk being used or if the file
contains a record format which is not supported.

It is not possible to describe every single aspect of every
function of the user-defined input/output in detail, since
these vary according to the device and to the nature of the
data. Data which is received via a modem line, for
example, requires different actions from data supplied by
measuring instruments. FLAM considers the origin of the
data to be "file", even though in a particular instance other
objects may be involved.

The functions of the user-defined input/output are as
follows:

FLAM specifies a range of functions based on the file
processing requirements for this interface, in accordance
with the above point of view. It is up to the user of the
interface to optimize the design of the functions, to ensure
that the desired results are achieved with them.

In order to be able to use a user-defined input/output, the
routines concerned must be linked to the application
program. This option is therefore only supported by the
program interfaces, i.e. by the subprogram and record
interfaces.

The support by the record interface of course only applies
to accesses to the FLAMFILE, since these are the only
types of access which take place via it.

A user-defined input/output is initiated by invoking flmopd
with device=7. This input/output can be activated at the
subprogram interface for all the files which are concerned
by the compression or decompression procedure, by
means of the FLAM parameters user_io, inuser_io and
outuser_io.

Whereas, with the functions of the record interface, the
programmer is obliged to observe a series of rules

Function Purpose
Corres-
ponding
I-O calls

usrcls Terminating processing of file close
usrget Reading one record (f)gets/

read
usropn Opening file (f)open
usrpos Positioning to record
usrput Writing one record (f)puts/

write

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-13

regarding the order and consistency of the calls, the
correct interaction of the functions of the user-defined
input/output is the responsibility of FLAM, which also takes
the initiative for the calls.

The programmer of the user-defined input/output routines
is merely required to make sure that the actions and
behavior of the individual functions are correct. The
description in this chapter is therefore restricted to these
aspects.

usropn is invoked first of all once, and once only, for each
assigned file. The workio argument causes a work area of
1024 bytes to be made available as file-specific memory.
This area is adopted automatically for all subsequent calls
until the usrcls.

The openmode argument specifies the desired access
type (input, output). The record_format, record_size, etc.
arguments specify the file and record attributes, which can
be adapted to each particular file if necessary.

The successful termination of the function and any special
states or errors can be reported by means of predefined
and freely assignable return codes. Each return code is
evaluated by FLAM, and passed on to the invoking
programs if an error is established.

A record is transferred for writing with usrput. If the record
cannot be written with the specified size, the return code
must include the information that it has been either
shortened or padded with the characters specified by
padchar in the usropn.

FLAM requests the next record with usrget. The maximum
number of characters which can be transferred is
specified in the buffer_length parameter. If the record
needs to be shortened as a result, this must be indicated
by the return code.

The return code must also indicate when the end of the
file is reached. The record size must be returned for each
record which is read (even if the record format is fixed).

usrcls causes the file to be closed. The work area for this
file is released again by FLAM after control has been
handed back.

urspos is a dummy function in UNIX.

FLAM Overview Chapter 1

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-14

1.5.5 The User Exits

A user exit is a user-provided program that is invoked by
FLAM at specific events during the processing via the
defined interface.

FLAM supports two catagories of user exits: file access
exits and an exit for automatic key management.

1.5.5.1 File Access Exits

These exits permit the user to postprocess the records
output by FLAM (both those contained in the FLAMFILE
and those in the decompressed file) before they are finally
saved, i.e. they can be modified, deleted or given
additional records. The records which are read by FLAM
can be prepared for processing by FLAM in the same way.

The term "access" refers in this context either to an
input/output instruction or to a corresponding call of the
user-defined input/output, and not to a call of a record
interface function. Thus - at least as far as the FLAMFILE
is concerned - the user exits are not synchronized with the
application program, since the latter is not able to
establish, for example, whether or not a flmget call
actually does initiate one or more read operations.

These user exits can be activated via the subprogram
interface or the record interface, the latter being able to
activate the user exits for FLAMFILE accesses only. The
programs invoked through these interfaces must be
staticly linked to the application (see section 6.2).

A user exit is invoked each time the file is opened, read,
written or closed. The functioncode argument indicates to
the user exit the access type, to permit it to respond in the
appropriate manner to each particular situation.

FLAM supports the following user exits for file accesses:

User exits exk10 and exk20 can be used during the
compression procedure for accesses to the original file or
to the FLAMFILE, whereas exd10 and exd20 can be used
during the decompression procedure to access the
decompressed file or the FLAMFILE. If records contained
in the FLAMFILE were modified by user exit exk20 when

User exit Invoked for accesses to

exk10 Original file (compress)

exk20 FLAMFILE (compress)

exd10 Decompressed file (decompress)

exd20 FLAMFILE (decompress)

Chapter 1 FLAM Overview

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

1-15

they were compressed, they can only be decompressed if
the modifications are undone again by the complementary
user exit exd20, i.e. if every FLAM record is reset by
exd20 to the state in which it was originally transferred by
FLAM at user exit exk20.

1.5.5.2 User Exit for Automatic
 Key Management

Automatic key management facilitates handling encrypted
files by relieving the user from duties like generating,
exchanging and storing passwords, in whatever way.

When invoking the key management exit routine for
encryption, FLAM also passes an optionally user-supplied
character string via the interface. The exit returns a
password which is used by FLAM for encrypting. In
addition, the exit may also return a byte string that FLAM
attaches to the encrypted FLAMFILE. When decrypting,
FLAM passes this string back to the exit for the retrieval of
the password.

This exit can be activated by the flam command or the
subprogram interface. It is not available via the record
interface. Programs invoked through these interfaces
must be created as shareable objects and are linked
dynamically (see section 6.2).

Note: Throughout this manual the terms "password" and
"(encryption) key" are used synonymously.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 1999 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 2:

The f lam Command

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-3

2. The flam Command

2.1 Functions

The following functions can be invoked with the flam
command:

• File compression with or without encryption (using the
-compress parameter)

• File decompression with decryption, if needed (using
the -decompress parameter)

• Modification of installation-specific default values (using
the -defaults parameter)

• List of installation-specific default values (using the -list
parameter)

When the flam command is invoked, all the necessary
information can be specified at different levels, namely
explicitly in the command itself, in a parameter file or
implicitly by means of default values. The description of
the command syntax below sets out the logical
relationships between the syntax elements, in other words
between the parameters and their arguments, irrespective
of the level at which they are actually specified.

The classification of the syntax elements in this chapter as
either mandatory or optional applies to this FLAM check.
The syntax rules consequently refer to all the settings
together, and not simply to the inputs in the command line.

Other than in relation to the priority rules, the specification
level is therefore not relevant to the syntax description.
Thus, where the explanations below refer to parameters,
they apply equally irrespective of whether they are taken
to mean the flam command, the parameter file or the
default values. Explicit reference is made to exceptions.

When the flam command is entered, either upper or
lowercase notation can be used for FLAM, FLAMFILE and
all the other parameter names.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-4

2.2 Command Syntax

The shell command flam invokes the utility either
interactively or from a shellscript.

Syntax FLAM -parameter[=value] [...]

Since the parameters can be specified in a parameter file
as well as in the command, and since the missing
parameters necessary to execute a particular function
must then be taken from the default value file, the order of
the specifications is arbitrary. Any parameters which are
not essential to execute the function are ignored.

Parameters and their values may be abbreviated by
omitting as much of their endings as possible without
causing ambiguity. For example, -recs may be used for
-recsize, while using less characters could be taken to
mean -recdelim, -recformat, or -recsize.

The parameters which are allowed for each function are
specified in the appropriate sections of this chapter. A
detailed description of all the parameters in alphabetical
order can be found in section 2.3.

For better redability, all parameters in this manual are
preceded by a minus sign ("-"). Its use, however, is
optional.

Notational remark:
On this and the following pages, square brackets ("[" and "]")
denote syntax elements optional in the respective contexts.
Command parts printed in italics are to be substituted by the
user for actual values. Ellipses stand for repetitions of the
previous syntax element.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-5

2.2.1 FLAM Compression

Syntax flam -compress -parameter[=value] [...]

-attributes = attribute option

-compress

-flamcode = character set

-flamfile = file specification

-flamin = file specification

-indelete

-inrecdelim = record delimiter

-inrecformat = record format

-inrecsize = n

-kmexit = exit specification

-maxbuffer = n

-maxrecords = n

-msgfile = message file

-mode = compression mode

-ndc

-parfile = parameter file

-password = password

-recformat = record format

-recsize = n

-show = display option

-translate = code table

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-6

2.2.2 FLAM Decompression

Syntax flam -decompress -parameter[=value] [...]

-delete

-flamfile = file specification

-flamout = file specification

-kmexit = exit specification

-msgfile = message file

-option = FLAM option

-outrecdelim = record delimiter

-outrecformat = record format

-outrecsize = n

-pad_char = padding character

-parfile = parameter file

-password = password

-show = display option

-translate = code table

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-7

2.2.3 Displaying the FLAM Default Values

Syntax FLAM -list[=list specification]

See description of the -list parameter.

2.2.4. Setting the FLAM Default Values

Syntax FLAM -defaults=default specification

This call can only be used by the system manager. See
description of the -defaults parameter.

2.3 flam Command Parameters

This section describes the parameters of FLAM in
alphabetical order, irrespective of the functions with which
they can be used.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-8

-attributes

This parameter causes original file information to be
entered in the FLAMFILE.

Syntax -attributes=attribute option

Values

 attribute option Meaning

 none No file information

 common Common file information

 all Common file information and system-specific information
about the original file

Description Entering file information in the FLAMFILE permits it to be
extracted later on without having to decompress the entire
FLAMFILE. The organization, the record format and the
record size of the original file can be saved during the
compression procedure, together with a flag which
identifies the operating system in which the compression
took place (-attributes=common).

Thus, when the file is decompressed, it can be restored
with its original characteristicsif necessary.

The original file specification can be entered optionally (-
attributes=all). When the file is decompressed, the output
specification [] or [*] can then be set, so that FLAM
automatically restores both the entered file specification
and the associated characteristics.

If -attributes=none, no information about the original file is
entered in the FLAMFILE.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-9

-compress

This parameter causes FLAM to compress the original file.

Syntax -compress

Values None

Description When FLAM is invoked, -compress must be specified in

order to compress the original file and create a
FLAMFILE.

-decompress

This parameter causes FLAM to decompress the
compressed file.

Syntax -decompress

Values None

Description When FLAM is invoked, -decompress must be specified in

order to decompress the compressed file and create a
decompressed file or show the information about the
original file(s).

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-10

-defaults

This parameter permits the installation-specific default
values to be modified. It can only be used by the system
manager.

Syntax -defaults=default specification

Values default specification

Default specifications always consist either of a keyword
or of a keyword with an assigned value. With only a few
exceptions, the keywords are identical to the parameters
of the flam command and the assigned values are subject
to the same syntax as for these parameters.

Where the default specifications described below include
references to the corresponding parameters, their syntax
and meaning can be taken from the descriptions of these
parameters.

ascii_ebcdic=
translation option This specifies how individual ASCII characters are to be

converted to EBCDIC code. Translation options have the
following format:

ascii_code:ebcdic_code

ascii_code and ebcdic_code are the codes for the ASCII
character which must be converted and for the EBCDIC
character which must be inserted; they are both specified
in the form of a hexadecimal number between 00 and ff.

Example:

-defaults=ascii_ebcdic=41:81

causes each ASCII "A" to be converted to an EBCDIC "a"
during a compression procedure for which -translate=e/a
has been specified.

attributes=attribute option See description of the -attributes parameter.

Note:

It is advisable to set -attributes=all as the default value, to
ensure that FLAMFILES which have been created using
the default values, and which contain compressed
versions of several original files, can be decompressed
into individual files again with the original names and the
original attributes, such as the record format. Otherwise,
this information will be lost when the default values are
used and it will not be possible to reconstruct the origin of
the files again later on.

compress See description of the -compress parameter.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-11

decompress See description of the -decompress parameter.

delete See description of the -delete parameter.

ebcdic_ascii=
translation option This specifies how individual EBCDIC characters must be

converted to ASCII codes.

Translation options have the following format:

ebcdic_code:ascii_code

ebcdic_code and ascii_code are the codes for the
EBCDIC character which must be converted and for the
ASCII character which must be inserted; they are both
specified in the form of a hexadecimal number between 00
and ff.

flamcode=character set See description of the -flamcode parameter.

flamfile=file specification This defines the default name for the FLAMFILE. The file
flamfile=none specification must name a single file uniquely; it must not
 contain any patterns, nor must it be specified as a

substitution rule.

Note that when a default name is defined, stdin, stdout,
and pipelines can no longer be used for flamfile.

With flamfile=none, no default value is used for this
setting.

This file name is the default value for the output file during
the compression procedure and the default value for the
input file during the decompression procedure. The
characteristics which are specified with recformat, recsize,
recdelim, delete, user_io, exd20 and exk20 all refer to this
file.

flamin=input specification This defines the default name for the input file during the
flamin=none compression procedure. The input specification is a file
 specification. It must name a single file uniquely; it is

allowed to contain patterns, but must not be specified as a
substitution rule.

Note that when a default name is defined, stdin and
pipelines can no longer be used for flamin.

With flamin=none, no default value is used for this setting.

flamout=
output specification This defines the default name for the output file during the
flamout=none decompression procedure. The output specification is a

file specification. It must name a single file uniquely; it
must not contain any patterns, nor must it be specified as
a substitution rule.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-12

Note that when a default name is defined, stdout and
pipelines can no longer be used for flamout.

With flamout=none, no default value is used for this
setting.

indelete See description of the -indelete parameter.

inrecdelim See description of the -inrecdelim parameter.

inrecformat See description of the -inrecformat parameter.

inrecsize See description of the -inrecsize parameter.

maxbuffer See description of the -maxbuffer parameter.

maxrecords See description of the -maxrecords parameter.

mode=FLAM mode See description of the -mode parameter.

msgfile=message file See description of the -msgfile parameter.
msgfile=none With msgfile=none, no default value is used for this

setting.

option=FLAM option See description of the -option parameter.

outrecdelim See description of the -outrecdelim parameter.

outrecformat See description of the -outrecformat parameter.

outrecsize See description of the -outrecsize parameter.

parfile=parameter file See description of the -parfile parameter.

parfile=none With parfile=none, no default value is used for this setting.

recdelim See description of the -recdelim parameter.

recformat See description of the -recformat parameter.

recsize See description of the -recsize parameter.

show=display option See description of the -show parameter.

translate=code table See description of the -translate parameter.
translate=none With translate=none, no default value is used for this

setting.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-13

Description The system manager can define default values for all the
parameters of the flam command except the -defaults,
-list, -kmexit, and -password parameters. The default
values can only be modified by a command.

The default values can be defined by invoking FLAM with
the -defaults parameter and specifying the default
specification. This consists of a keyword and possibly an
assigned value. The syntax of the default specifications is
the same as that of the flam parameters. In addition, there
are also the ascii_ebcdic and ebcdic_ascii parameters.

-delete

If this parameter is specified, the FLAMFILE is/are deleted
after successful decompression.

Syntax -delete

Values None

Description This parameter causes a FLAMFILE to be deleted after

having been successfully decompressed. If any errors oc-
cur while the FLAMFILE is being decompressed, the file
remains stored. This enables the errors to be analyzed
and the original data to be restored as far as possible.

A default setting -delete (not recommended!) can be
disabled or changed using the parameter -nodelete.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-14

-flamcode

This parameter defines the character set for character-
coded information in the FLAMFILE when a file is
compressed, such as the file name and control
characters.

Syntax -flamcode=character set

Values

 character set Meaning

 ascii Use ASCII code for the FLAMFILE.

 ebcdic Use EBCDIC code for the FLAMFILE.

Description This parameter specifies the character set which is to be

used to represent character-coded information in the
FLAMFILE during the compression procedure. In adc, cx8,
and vr8 modes, this only concerns the information contai-
ned in the FLAM file header, such as the original file name
and a few control characters, since the compressed file is
represented in binary form. In the cx7 mode, all the FLAM
control characters in the compressed file are also coded in
this character set. The characters extracted from the ori-
ginal data, however, remain unaffected in all modes. Their
translation can be achieved by the -translate parameter.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-15

-flamfile

This parameter specifies the FLAMFILE(s).

Syntax -flamfile=file specification

Values file specification

The file specification specifies one or more files, a search
pattern (with wildcards * or ?), or a list of such elements
separated by commas.

With compression, file specification may also consist of a
substitution rule (see section 2.4).

Description During compression, the compressed data is written in the

specified file(s).

During decompression, the compressed data is read from
the specified file(s).

If the file specification contains more than one file, the
rules described in sections 2.4.1 to 2.4.3 with regard to the
syntax of the file specification and the assignment to the
input specification (compression) or the output
specification (decompression) must be observed.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-16

-flamin

This parameter causes the compression files to be output.

Syntax -flamin=input specification

Values input specification

The input specification specifies one or more files, a
search pattern (with wildcards * or ?), or a list of such
elements separated by commas.

Description The specified files are compressed in accordance with the

other parameters specified for the command.

If the input specification contains more than one file, the
rules described in sections 2.4.1 and 2.4.3 regarding the
syntax and the assignment to the FLAMFILE
specifications must be observed.

-flamout

This parameter specifies the names of the decompressed
files.

Syntax -flamout=output specification

Values output specification

The output specification specifies one or more files, a
search pattern (with wildcards * or ?), or a list of such
elements separated by commas.

Description During the decompression procedure, the decompressed

data of the FLAMFILE is written in the specified file(s).

If the output specification contains more than one file, the
rules described in sections 2.4.2 and 2.4.3 with regard to
the syntax and the assignment to the FLAMFILE
specifications must be observed.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-17

-indelete

This parameter causes the original file to be deleted after
the compression procedure.

Syntax -indelete

Values None

Description -indelete causes the original file(s) (specified with -flamin)

to be deleted after having been successfully compressed.

If any errors occur while a file is being compressed, the
file is not deleted. The compression procedure can be
repeated.

A default setting -indelete (not recommended!) can be
disabled or changed using the parameter -noindelete.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-18

-inrecdelim

This parameter specifies a record delimiter for original
files.

Syntax -inrecdelim=record delimiter

Values record delimiter

 Hexadecimal characters between 01 and ff, with a length

of either 1 or 2 bytes.

Description This parameter specifies the record delimiter for an

original file with a stream record format. If a stream record
format is specified without a record delimiter, 0x0a and
0x0d0a are interpreted as the end of a record.

If only 0x0a should be interpreted as the end of a record,
-inrecdelim=0a must be specified, in order to ensure that
occurrences of 0x0d which precede 0x0a are interpreted
as part of the data and not as part of a record delimiter. If
only 0x0d0a should be interpreted as a record delimiter in
a particular file, -inrecdelim=0d0a must be specified, to
ensure that any 0x0a strings which occur alone are
identified as belonging to the data.

Any other character combinations can be used as record
delimiters, in addition to 0x0a and 0x0d0a.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-19

-inrecformat

This parameter specifies the record format of the original
file.

Syntax -inrecformat=format option

Values format option

 format option Meaning

 eaf EAF data, variable record size with a 4-byte size field in

ASCII or EBCDIC code. The record size only specifies the
length of the data excluding the size field. The size field is
part of the data.

 fix Fixed record size as set by -inrecsize.

 stream Variable record size (max. 2048 characters) with record

delimiter. Typically text data.

 undefined Records with no defined structure; records of an identical

size are read (with the possible exception of the last one).

 variable Variable record size with 2-byte binary record size (includ-

ing length field).

 var_2b Variable record size with 2-byte binary record size (includ-

ing length field).

 var2b_data Variable record size with 2-byte binary record size (not in-

cluding length field).

 var_4b Variable record size with 4-byte binary record size (includ-

ing length field) (host).

 var_ascii Variable record size with 4-byte size field in ASCII code

(including length field).

 var_ebcdic Variable record size with 4-byte size field in EBCDIC code

(including length field).

Description This parameter specifies the record format of the original

file. The data is read from the file in the form of logical
records with the specified format.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-20

-inrecsize

This parameter specifies the record size of the original file.

Syntax -inrecsize=n

Values n

 Integer number between 1 and 32760

Description This parameter specifies the record size of original files

with a fixed or undefined record format.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-21

-kmexit

This parameter specifies a user exit routine for automatic
key management.

Syntax -kmexit=exit specification

Values exit specification has the general form

 [(]func[([lib])[exparm]][)]

where

func is the name of a function in a shared library that

supplies the password (key) needed for
en/decryption.

lib is the name of a shared library (without the .so

suffix) containing func. When lib is omitted, FLAM
loads the function from libflamkm.so which it ex-
pects to find in directory $FLAM_PATH/../lib when
that environment variable is defined, or otherwise
in /usr/lib.
Note: When entered in a shell command, each paren-
thesis must be preceded by an escape character (\) to
avoid its being interpreted by the shell. Escape charac-
ters are not requitred in parameter files.

exparm is a sequence of up to 256 characters to be pas-

sed to the password function func. It must not
contain space characters or parentheses. If it
contains commas, the entire Exit specification
must be enclosed in parentheses. exparm must
always be preceded by a pair of parentheses
which may be empty when lib is omitted.

Description With this parameter, FLAM is told the name of a function

it has to invoke in order to receive a password needed for
encryption or decryption of a file. This function must reside
in a shared library (file type .so) the name of which may be
specified after the function name. After the library name,
an alphanumeric string may be appended that will be
passed as a parameter string to the invoked function.

No default value can be set for -kmexit.

This parameter and -password are mutually exclusive.

For details on the interface to this user exit and its building
see section 6.2.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-22

-list

This parameter permits a list of the installation-specific
default values to be output. The list can only be displayed
using a command.

Syntax -list[=list specification]

Values list specification

Any flam parameter for which a default value can be set.

Description The installation-specific default values can be displayed

with the list parameter.

When a list specification is supplied, the current setting of
the default value for the respective paramter is displayed.

When list specification is omitted, a list of all current
default values is displayed except the code tables for
ASCII-EBCDIC and EBCDIC-ASCII translations. Also, the
FLAM version and its creation date are displayed.

The details are displayed similar to the following example
while the operating system, the creation date and the
effective values correspond to those of the particular
installation.

FLAM (R) 4.1.0 for SunOS
copyright (c) 2006 by limes datentechnik gmbh
Build from Jan 22 2006 - 11:11:35

 Default settings

attributes all

decompress

flamcode ASCII

flamfile (compressed file) (not specified)
 recformat fix
 recsize 512

flamin (source file) (not specified)
 inrecformat stream
 inrecdelim x'0a'

flamout (decompressed file) (not specified)
 outrecformat stream
 outrecdelim x'0a'

maxbuffer 32768

maxrecords 4095

message file (not specified)

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-23

mode cx8
 encryption none

option nocut
 nosuppress

parameter file (not specified)

show all

translate (conversion file) (not specified)

The list specifications ascii_ebcdic and ebcdic_ascii cause
the respective code tables to be displayed. The format of
the display is the same as described for the setting of the-
se default values (see description of the parameter
-defaults).

-maxbuffer

This parameter specifies the size of the matrix buffer.

Syntax -maxbuffer=n

Values n

Integer number between 1 and 2,621,440. Values n where
0<n<2,560 are interpreted as a number of Kbytes (1 Kbyte
= 1,024 bytes), while higher values are interpreted as a
number of bytes. FLAM chooses one of the buffer sizes
from the table below (in Kbytes):

If the specified value is not contained in the table, the
nearest higher buffer size is taken instead (if any);
otherwise, the maximum value is always used (2,560).

2 4 6 8 10 12 14 16

32 48 64 80 96 112 128 144

176 224 256 288 320 352 384 416

512 640 768 896 1.024 1.536 2.048 2.560

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-24

Description During the compression with modes cx7, cx8, and vr8,
FLAM reserves the matrix buffer for the records of the
original file. Please note that a matrix buffer of the same
size must also be made available for the decompression
procedure, even if this takes place on a different system.

 With mode adc, this parameter has no effect.

-maxrecords

This parameter specifies the maximum number of records
which can be compressed in the same block.

Syntax -maxrecords=n

Values n

Integer number between 1 and 4095.

Description FLAM buffers records in the matrix buffer up to the

specified number and compresses them. This specified
number may occasionally not be reached if the matrix
buffer is too small for the full number of records. The
compression efficiency generally increases with the
number of records. If -maxrecords=1, the compression is
sequential and record-oriented.

 With modes cx7, cx8, and vr8, up to 255 records are

stored in one matrix. If a higher value is specified it takes
effect only with mode adc.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-25

-mode

This parameter specifies the mode in which the original
file is compressed and, when desired, encrypted.

Syntax -mode=FLAM mode

Values FLAM mode

 FLAM mode Meaning

 adc With -mode=adc the input file is compressed in the adc

mode and a binary FLAMFILE is created. This is the
most efficient mode and can be used universally
irrespective of the data structure. With this mode, a
password can be specified to encrypt the FLAMFILE.

 aes -mode=aes causes the input file to be compressed in the

adc mode with AES encryption. A password must be
specified with the -password parameter.

 flamenc -mode=flamenc causes the input file to be compressed in

the adc mode with FLAM encryption (the proprietary
encryption method used with FLAM 3). A password must
be specified with the -password parameter.

 cx7 With -mode=cx7, the input file is compressed in the cx7

mode and a character-coded FLAMFILE is created.
However, files should only be compressed in this mode if
they do not contain any non-printing characters. It is a
slightly less efficient mode, though on the other hand the
FLAMFILE which is created can be converted to other
character sets, e.g. from ASCII to EBCDIC, without losing
information.

 cx8, vr8 With -mode=cx8 or -mode=vr8, the input file is com-

pressed in the cx8 or vr8 mode, respectively, and a binary
FLAMFILE is created. The purpose of these two modes is
to ensure compatibility with previous versions.

Description The input file is compressed in the specified FLAM mode

and, when a password is entered, encrypted with the
selected method. When mode adc is specified and a
password is given, the result is the same as with
-mode=flamenc.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-26

-msgfile

This parameter can be used to redirect FLAM message
output to a file.

Syntax -msgfile=message file

Values message file

This specifies a file to which the FLAM messages must be
output.

Description FLAM messages are output to stderr which is generally

the user's screen when working interactively. With
-msgfile=message file, output can be sent to a file to act
as a permanent copy for documenting the compression
procedure. This is important for batch processing, for
example.

However, logging in the message file does not begin until
after the syntax and compatibility of the FLAM settings
specified in the command have been checked. Error
messages concerning syntax errors, missing files or
invalid settings are not logged. In such cases, FLAM stops
processing without creating a message file.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-27

-ndc

This parameter can be used in adc mode to suppress
compression.

Syntax -ndc

Values None

Description For data that is known to compress badly, FLAM's

performance can be improved by this parameter which
suppresses compression. With modes aes and flamenc,
only encryption is done while with mode adc this
parameter causes FLAM to simply copy the data.

With other modes, -ndc has no effect.

FLAMFILEs created with -ndc are always Secure
FLAMFILEs and are logged as adc-compressed files at
decompression.

-ndc cannot be set as default.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-28

-option

This parameter controls FLAM's behaviour when
decompressed records are output.

Syntax -option=FLAM option

Values FLAM option

 FLAM option Meaning

 cut Records with a length greater than the maximum record

size are truncated.

 nocut Records with a length greater than the maximum record

size are not truncated.

 suppress Blank space at the end of a record is suppressed.

 nosuppress Blank space at the end of a record is not suppressed.

Description During the decompression, the record format and size of

the decompressed file can either be specified explicitly or
adopted from predecessor versions, so that the maximum
record size is less than in the original file. If the cut option
is specified, the decompression continues and any
records which are too long are truncated to the maximum
size. If nocut is specified, decompression is aborted and
an error message is output.

If the decompressed file is written with the stream record
format during the decompression procedure, blanks at the
end of a record can be suppressed by specifying
suppress. nosuppress causes the blanks to be written.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-29

-outrecdelim

This parameter specifies a record delimiter for
decompressed files.

Syntax -outrecdelim=record delimiter

Values record delimiter

 Hexadecimal characters between 01 and ff, with a length

of either 1 or 2 bytes

Description This parameter specifies the record delimiter for a

decompressed file with the stream record format.

If a record delimiter is not specified for the stream record
format, 0x0a is used as a default delimiter. If outrecdelim
=0d0a is specified, the decompressed file can be
generated in MS-DOS format.

Any other character combinations are also allowed as
record delimiters.

-outrecformat

This parameter specifies the record format of the
decompressed file.

Syntax outrecformat=format option

Values format option

 See description of format options for -inrecformat.

Description This parameter specifies the record format of the

decompressed file. The decompressed data is written in
the file in the form of logical records with the specified
format.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-30

-outrecsize

This parameter specifies the record size of the
decompressed file.

Syntax -outrecsize=n

Values n

Integer number between 1 and 32760

Description This parameter specifies the record size of the

decompressed files with a fixed or undefined record
format.

-pad_char

This parameter specifies the character which is used to
pad the records in the decompressed file.

Syntax -pad_char=hexcode

Values hexcode

Hexadecimal characters between 00 and ff

Description During the decompression procedure, the record format

and size of the decompressed file can be specified
explicitly, so that the record size is greater than in the
original file. In this case, the records are padded to the
specified length.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-31

-parfile

This parameter permits the specifications in the command
line to be supplemented with FLAM parameters in a para-
meter file.

Syntax -parfile=parameter file

Values parameter file

This parameter specifies a file containing FLAM
parameters. When no path is given, the current directory
is searched.

Description Specifying a parameter file permits default values to be

overridden without the need for complex inputs in the
command line (see also section 2.5, Priority Rules for
FLAM Settings).

-password

This parameter is used to specify a password for
encrypting or decrypting a FLAMFILE in AES or FLAMenc
mode when compressed with mode adc.

Syntax -password=password

Values password

 The value for password can be entered in two formats

 �
As a simple character string

In this format the password is entered immediately
following the equal sign as a string of up to 64
characters. Valid characters are all capital and small
Latin letters, decimal digits, the minus sign (-) and
underscore (_). Using any other characters may yield
unpredictable results. Note that capital and small
letters are different characters.

Example: -password=Alligator
 �
As a sequence of hexadecimal digits

In this format the password may consist of an even
number of up to 128 hexadecimal digits (0-9, a-f, A-F).

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-32

In this context small and capital letters are
interchangeable. The sequence is enclosed in single
quotes (\‘) and preceded by the letter “X“. Any such
combination is permitted.

Example: -password=X\‘416c6c696761746f72\‘

Description FLAM uses the specified password during compression

with mode adc to encrypt the compressed data and during
decompression to decrypt the encrypted compressed
data. The passwords used at compression and
decompression must be identical or else the
decompression command is rejected with an appropriate
error message.

With modes other than adc, aes, or flamenc this
parameter is ignored. When used with mode adc, the
FLAMenc method is used for encryption.

A password entered as a character string is equivalent to
a hexadecimal sequence consisting of its character codes
and vice versa.

Note that a given character string entered on an ASCII
system is not equivalent to the same string entered on a
system using EBCDIC code. Therefore, for data exchange
among systems with different character codes the
hexadecimal format must be used if the codes of the
password characters are not available on the keyboard.

 This parameter cannot be set by default.

 This parameter and -kmexit are mutually exclusive.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-33

-recdelim

This parameter specifies the record delimiter for the
FLAMFILE.

Syntax -recdelim=record delimiter

Values Hexadecimal characters between 01 and ff, with a length

of either 1 or 2 bytes

Description This parameter permits a record delimiter to be specified

for the stream record format.

If a record delimiter is not specified for the stream record
format, 0x0a is used as a default delimiter.

If -recdelim=0d0a is specified, for example, the data can
be output in MS-DOS format.

This parameter can only be specified for the compression
procedure.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-34

-recformat

This parameter specifies the record format of the
FLAMFILE.

Syntax -recformat=format option

Values format option

 format option Meaning

 fix Fixed-size records, size as set by the -recsize parameter.

 var Variable-size records; the record size field is 2 bytes long

 stream Variable-size records with a record delimiter

Description The FLAMFILE always contains records of identical size.

In the cx8 and vr8 modes, the records can be written
either with (variable) or without (fixed) a record size field.

The stream record format is used in the cx7 mode. If
-recdelim is not specified, 0x0a is used as the default
record delimiter.

recformat need only be specified for the compression
procedure.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-35

-recsize

This parameter specifies the record size of the FLAMFILE.

Syntax -recsize=n

Values n

Integer number between 80 and 32760 for all modes
except cx7

Integer number between 80 and 4095 for the cx7 mode

Description This parameter specifies the record size of the FLAMFILE.

The compressed data is always written in records of the
same size, irrespective of the record format.

There is no relationship between the compressed blocks
and the records in the compressed file. A record may
contain data pertaining to one or more compressed
blocks. A compressed block may be contained in one or
more records.

There is no relationship between the records in the
compressed and non-compressed files.

This parameter need only be specified for the
compression procedure.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-36

-show

This parameter specifies which information should be
shown by FLAM.

Syntax -show=display option

Values Display option

 display option Meaning

 none No information is shown

 all All the available information is shown. This depends on

the invoked operation (compress or decompress), but not
on whether FLAM was invoked directly or using the
parameter file.

The following information is shown during the
compression procedure:

FLAM version

FLAM settings

Operation (compress)

Code table

Compression mode

Matrix buffer size

Maximum number of records/matrix buffer

Character set (ASCII or EBCDIC)

attributes setting

Name of the original file

Formatting information for the original file

Name of the compressed file (FLAMFILE)

Formatting information for the compressed file

Statistical information (see show=statistic)

Error messages and warnings

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-37

 display option Meaning

The following information is shown during the
decompression procedure:

FLAM version

FLAM settings:

Operation (decompress)

Code table (only if the FLAM call includes the
necessary specifications)

Name of the compressed file (FLAMFILE)

Name of the decompressed file

Formatting information for the decompressed file

Saved compression information (see show=attributes)

Statistical information (see show=statistic)

Error messages and warnings

 attributes (Decompression only)

This suppresses creation of the decompressed file

Only the saved compression information is shown

Name of the original file (only if -attributes=all was
specified when it was compressed)

Formatting information for the original file

Compression mode

Character set (ASCII or EBCDIC)

System which created the FLAMFILE

 error Only error messages and warnings are shown.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-38

 display option Meaning

 statistics Error messages, warnings and the following statistics are
shown:

Number of compressed records

Number of compressed bytes

Number of non-compressed records

Number of non-compressed bytes

Compression efficiency as compared with the original file
(compression only) [1]

Runtime

[1] This efficiency is the ratio of the number of bytes
actually read to the number of bytes output and is
specified as a percentage. Record size fields, record
delimiters and characters for padding compressed records
are not taken into account.

Description This parameter controls the information output by FLAM.

You can choose between detailed information (all), error
messages and warnings either with or without statistics
(error or statistic) and no information (none).

During the decompression procedure, you can decide just
to show the information about the original file, without cre-
ating a decompressed file. Use -show=attributes to do so.
If the FLAMFILE contains compressed versions of several
files, the information about each of the original files is
shown one file at a time. However, this information is only
shown if this was specified when the files were
compressed into the FLAMFILE (see -attributes
parameter). If -show=attributes is specified, the output file
parameter is ignored.

Message outputs can be redirected to a file by specifying
2>>filename. If -msgfile=filename is specified, on the
other hand, the FLAM messages are written into a file, but
system messages continue to be displayed on the screen.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-39

-translate

This parameter causes the codes for the data in the
original file to be translated prior to the compression
procedure or those for the data in the decompressed file
to be translated after the decompression procedure.

Syntax -translate=code table

Values Code table

This specifies a file containing the code table. The code
table is a string of 256 characters making up the character
set into which the data is to be translated. (Please refer to
Appendix C, Code tables, for further details of the code
table.)

Description If -translate=code table is specified for the compression

procedure, every record in the original file is translated
according to the specified code table before it is buffered
in the matrix buffer. During the decompression procedure,
this specification causes every decompressed record to
be translated according to the code table before it is
inserted in the decompressed file.

When FLAM is installed, code tables for converting from
ASCII to EBCDIC and from EBCDIC to ASCII are made
available as standard.

If one of the code tables in the default value file is to be
used, the following specifications are necessary:

a/e to convert from ASCII to EBCDIC,
e/a to convert from EBCDIC to ASCII

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-40

2.4 File Specifications

File specifications are subdivided into input specifications
and output specifications.

The input specification for the compression procedure
(original file) is specified by -flamin, and the output
specification (compressed file) by -flamfile.

The input specification for the decompression procedure
(compressed file) is specified by -flamfile, and the output
specification (decompressed file) by -flamout.

Note: If a file specification which includes a pattern or a
substitution rule is rejected when the command is
interpreted, it must be enclosed in quotation marks.

2.4.1 Input Specifications

The input specification can be made up of a file name, a
pattern or a list of file names and/or patterns. A list can be
specified as follows:

"n1,n2,..."

"n1 n2..."

n1,n2,...

All patterns which are valid in UNIX are allowed. The
associated file names are found using the ls command.

The files specified as input files must actually exist. At
least one matching file must exist for a pattern. Otherwise,
the flam command will be aborted and an error message
output.

If the input specification specifies files for processing by
FLAM, either the -flamin parameter or -flamfile must be
specified for the compression or decompression
procedure respectively.

If the data is to be entered via the special stdin file, the
parameter for the input specification can be omitted.
FLAM can thus be used as a filter.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-41

2.4.2 Output Specifications

The output specification can be made up of a file name, a
substitution rule or a list of file names and/or substitution
rules. A list can be specified as follows:

"n1,n2,..."

"n1 n2..."

n1,n2,...

Substitution rule format:

[string1=string2]

If a substitution rule is defined as an output specification,
the name of the FLAMFILE or the decompressed file must
be formed by substituting string2 for string1 in the name of
the input file. The strings and the equals sign must be
directly consecutive (i.e. with no separating blanks). The
substitution rule applies only to file names and not to path
names.

Example:

FLAM -compress -mode=cx8

-flamin="helptxt1.txt,helptxt2.txt"

-flamfile=[.txt=.cmp]

causes the files called helptxt1.txt and helptxt2.txt to be
compressed and the compressed data to be saved in the
associated FLAMFILEs called helptxt1.cmp and
helptxt2.cmp.

The substitution rule must be applicable to all the
assigned input files, i.e. string1 must be contained in the
names of every one of these files, or the flam command
will be aborted for the file to which it does not apply and
an error message will be output. Only one substitution
takes place when the name of the output file is formed,
even if string1 occurs more than once in the name of the
input file.

The output specifications [file name], [], and [*] have
special meanings.

Using [file name] as output specification causes the
decompression to select one or - when file name contains
wildcards -, possibly several, matching file(s) from a
FLAMFILE archive. Those are decompressed into the
current directory.

If the output specification for the decompression
procedure is [*], the names of the decompressed files are
derived from the FLAMFILE, provided the FLAMFILE
actually contains them. If not, an error message is output.
-attributes=all must be specified for the compression

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-42

procedure, in order to include the names of the original
files in the FLAMFILE.

If the output specification is [], the effect is similar to the
output specification [*], i.e. the names of the
decompressed files are derived from the FLAMFILE(s),
except that only the file name is taken into account. The
path name is ignored. All the files are thus created in the
current directory.

Once again, -attributes=all must have been set for the
compression procedure.

The output specifications [file name], [], and [*] must not
be part of a list of output specifications, i.e. they must
stand alone.

If the output specification specifies files for processing by
FLAM, either the -flamfile parameter or -flamout must be
specified for the compression or decompression
procedure respectively.

If the data is to be output to the special stdout file, the
parameter for the output specification can be omitted.
FLAM can thus be used as a filter.

2.4.3 Assignment of Input Specifications to
 Output Specifications

If the flam command contains several different input and
output specifications, they are assigned to one another.
The assignment determines where the compressed data
of each original file and the decompressed data of each
compressed file is saved.

The input and output specifications are assigned to one
another by means of their positions in the lists. The first
input specification is assigned to the first output
specification and the second input specification to the
second output specification, etc. If there are more input
specifications than output specifications, the excess input
specifications are assigned to the final output
specification. If there are too many output specifications,
the excess ones are ignored.

If the output specification is a file specification, all the
outputs which result from processing the assigned input
files are saved in this file. The file attributes must be
compatible.

If the output specification is a substitution rule, a separate
FLAMFILE, which is named according to this rule, is
created during the compression procedure for each of the
assigned input files.

During the decompression procedure, the substitution rule
is applied to the names of the FLAMFILEs and not to the

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-43

names of the compressed original files, i.e. each
FLAMFILE results in a separate decompressed file.

If a FLAMFILE which contains the compressed data of
several different files is assigned an output file, all the
compressed data in this FLAMFILE is decompressed into
the output file. The output specification [] or [*] is then
necessary in order to create separate files again. In this
case, each compressed block is decompressed into a file
with the original name.

In the example below, the flam command contains a list of
input specifications and a list of output specifications.

FLAM -compress -attributes=all

-flamin= "*.dat,*.txt,func1.hlp,func2.hlp"

FLAMFILE="[.dat=.cmp],text.arc,[hlp=xyz]"

The list of input specifications contains four entries,
namely the output specifications, two substitution rules
and a file specification. In accordance with the assignment
rules, a file with the same name and a .cmp extension is
created for each file which has a .dat extension, and the
compressed data of all the files with a .txt extension is
saved in a single FLAMFILE called text.arc. The
compressed data of func1.hlp is saved in func1xyz on
account of the substitution rule contained in the final
output specification. Since there are no further output
specifications, this rule is also applied to func2.hlp, i.e. a
FLAMFILE called func2xyz is created for its compressed
data.

It should be noted that text.arc can only be decompressed
into separate files if -attributes=all is specified for the
compression procedure, so that the names of all the
original files are included in the FLAMFILE. Either of the
output specifications [] or [*] can be used for the
decompression procedure, to ensure that the files are
decompressed separately and given their original names
again. If an output file were to be specified, a single file
would result, in which all the records of the original files
would be concatenated.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-44

2.5 Priority Rules for FLAM Settings

Settings such as the type of operation (compress or
decompress), the input/output files, etc., can be entered
either directly in the flam command or explicitly in a
parameter file.

Implicit settings are also possible simply by omitting
certain information, for example the compression mode for
the compression procedure.

The settings which apply automatically if any
specifications are missing or redundant are determined by
evaluating certain information in a fixed sequence; this
results in an order of priorities, which is based both on the
category and on the origin of the information.

Since parameter files may refer to other parameter files, it
is possible for several such files, possibly containing
contradictory information, to be concatenated. The first of
these parameter files has priority over all the others. If the
same parameter is specified more than once within a
parameter file, however, only the final specification is
valid.
The information which is used to determine the FLAM
settings is evaluated in the following order:

1. The command itself

2. The parameter files

3. The installed default values

If the command itself contains any contradictory or
incompatible information, it is rejected and an error
message is output.

The following priority rules apply in all other situations:

1. If a FLAM operation is specified in the command
(compress, decompress, list or modify default values), it
has priority over all the other specifications. If the
command does not contain this specification, a search is
made for it in the parameter file which is named explicitly
by parfile=parameter-file or in the concatenated parameter
files, if any exist.

 If the operation is not specified as a FLAM parameter

either, the installed default value, i.e. the default operation,
is taken instead.

2. Any specifications which are incompatible with the FLAM

operation are ignored. Valid specifications in the
command itself always have top priority.

3. All specifications which are missing from the command

are set in accordance with the parameter file(s), if one is
specified either in the command itself or in the form of an
installation-specific default value.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-45

4. All settings which cannot be established either at all or in
part after rules 1 to 3 have been applied are determined
on the basis of the installation-specific default values.

5. If the input or output specification is missing, the special

stdin and stdout files are used.

In the case of FLAM parameters, specifications with a low
priority are always completely overridden by the higher
priority, i.e. it is not possible to define a list of input
specifications partly in the command itself and partly in the
parameter file or in the form of default values. The list in
the command cancels out the list at the lower specification
level.

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-46

2.6 The FLAM parameter file

The parameter file can be edited using a text editor; it
contains FLAM parameters which uniquely match the
information in the command line of the flam command.
Each FLAM parameter consists of a keyword and possibly
an assigned value or a list of values. The FLAM
parameters can be arranged so that each one is entered
on a separate line; a line can however also contain several
parameters separated by commas. Comments are
allowed; they always start with a "!" and end at the line
break.

The example below illustrates how a parameter file can be
used. FLAM is invoked by the following command:

FLAM -parfile=param.flam

The parameter file called param.flam contains the
following FLAM parameters:

compress

mode=cx8

show=all

maxbuffer=128

flamin=test.dat

FLAMFILE=flamfile1.cmp

attributes=all

recformat=fixed

recsize=1024

This FLAM call causes the file called test.dat to be
compressed in the cx8 mode. The FLAMFILE is the file
called flamfile1.cmp. It has a fixed record format and a
record size of 1024, and contains all the compression
information, so that it can be decompressed in the same
environment without having to specify the decompressed
file.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-47

The same FLAM parameters can also be arranged as
follows:

compress, mode=cx8, show=all

maxbuffer=128

flamin=test.dat

FLAMFILE=flamfile1.cmp

recformat=fix, recsize=1024

attributes=all

In this case, the output on the screen will be as follows:

FLAM (R) 4.1.0 for SunOS

copyright (c) 2006 by limes datentechnik gmbh

Start: 14.01.2006 15:35:07

compress

mode cx8

maxbuffer 131072

maxrecords 255

flamcode ASCII

attributes all

Name of original file:............ /path001/test.dat

 inrecformat stream

 inrecdelim x'0a'

Number of uncompressed records ... 778

Number of uncompressed bytes 26,947

Name of compressed file: flamfile1.cmp

 recformat fix

 recsize 1024

Number of compressed records 14

Number of compressed bytes 7,168

Compression efficiency (%) 73.4

CPU time used (sec.) 0.0

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-48

2.7 The FLAM default value file

The default values for the flam command are saved in the
default value file called /usr/lib/flam_def.dat when FLAM is
installed.

This file is given the following access rights: -rw-r--r--. It
can be modified at any time by the system manager, but
not deleted.

The default value file can be modified using the flam
command with the -defaults parameter.

The settings in the default value file can be shown on the
screen using the flam command with the list parameter.
No special privileges are necessary to do so.

When FLAM is invoked, any information which is not
specified either in the command line or in the form of
FLAM parameters is derived if necessary from the default
value file called /usr/lib/flam_def.dat; this is the file which
contains the installation-specific default values.

Chapter 2 The flam Command

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-49

2.8 Alternative parameter names

Sometimes old parameters are replaced by new ones, in
order to make the most of FLAM's enhanced functionality,
while in other cases different, system-specific names are
used to designate the same functions. Both the old names
and those used by other systems are allowed in addition
to the parameter names specified here, to ensure
compatibility with Version 2.0 of FLAM for UNIX and with
these other systems. However, it is always best to use the
standard parameter names where possible.

Parameter name Alternative name

-attributes = no header=no

-attributes = common -

-attributes = all fileinfo, header=yes

decompress uncompress

-flamcode character_set

-indelete idelete

inrecdelim in_format=recdelim
 irecdelim
 irdelim
 indelim

inrecformat in_format
 informat
 irformat
 irecformat

inrecsize in_format=(record-format)
 insize
 irsize
 irecsize

maxbuffer buffer_size

maxrecords records_in_buffer

msgfile messages
 message_file
 log

The flam Command Chapter 2

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

2-50

Parameter name Alternative name

mode=cx7 cx7
 seven-bit

mode=cx8 cx8
 eight-bit

mode=vr8 vr8

mode=adc adc

option=cut cut

option=nocut nocut

outrecdelim out_format=recdelim
 orecdelim
 ordelim
 outdelim

outrecformat out_format
 orecformat
 orformat
 outformat

outrecsize out_format=(record-format)
 orecsize
 orsize
 outsize

parfile parameter_file

show=no info=no
show =error -
show =attributes info=hold
show =all info=yes

translate code_table

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2006 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 3:

The f lamup

Subprogram Call

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-3

3. Calling flamup

3.1 The flamup Calling Sequence

The application programs invoke the flamup subprogram
in order to compress or decompress one or more files in
accordance with the transferred arguments.

This section describes the data type and the semantics of
the arguments. In real applications, the call must be
adapted to the syntax of the respective programming
language. In C, the arguments follow the name flamup;
they are enclosed in parentheses and separated by
commas.

The flamup Subprogram Call Chapter 3

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-4

flamup

The flamup interface provides application programs with
the functionality of the flam command. User I/O and user
exits are supported in addition.

Syntax void flamup (char **flamid,

 unsigned long *returncode;

 char *parameter_string;

 long *string_length);

Arguments

 flamid Specifies a long integer (4 bytes), which is used internally

by FLAM during execution to identify the file.

 returncode Specifies a long integer (4 bytes), which is used by flamup

to return a return code to the invoking program.

 parameter_string Specifies a string containing the FLAM parameters which

must be used (see section 3.2, FLAM parameters in the
flamup subprogram call). The individual FLAM parameters
are separated by commas.

 string_length Specifies a long integer (4 bytes) containing the length of

the parameter_string argument in bytes. Maximal length is
512 bytes.

Return Codes A description of the return codes can be found in

Appendix A, Return Codes.

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-5

Application programs can convert the return codes which
are returned by flamup to error messages, in accordance
with the meanings listed in Appendix A, Return Codes.
The internal message routine of the flam command can be
used alternatively if desired with the FLAM table, instead
of a separate table with error texts.

The call to output an error message with the tables which
are used internally by FLAM is as follows:

put_flmsg(return_code)

The definitions used by FLAM - in particular, those of the
symbolic names for the various return codes - are
contained in the following C header file:

/usr/include/flamincl.h

Application programs which are written in other
programming languages require these definitions to be
translated to the appropriate language by the
programmer.

3.2 FLAM Parameters in the flamup
 Subprogram Call

The parameter_string argument of the flamup subprogram
call may contain all the parameters which are valid for the
flam command, with any of their valid values. The special
rule which applies when lists of file names are specified
should be noted. The individual file names must be
separated by a comma "," and enclosed in parentheses
"(",")" for the parameter concerned.

Example:

FLAM...=(file1,file2,..filen)

In addition to the parameters which are valid for the flam
command, the subprogram call may contain the FLAM
parameters for the user input/output routines (see also
chapter 5) and the user exits (see also chapter 6). The
following user input/output routines can be specified:

user_io

i(n)user_io

o(ut)user_io

The flamup Subprogram Call Chapter 3

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-6

The following user exits for file accesses can be specified:

exk10

exk20

exd10

exd20

The user input/output routines and the user exits must be
generated by the user and linked to the application
program and flamup (flam_upu.o module).

Only the parameters for the user input/output routines and
user exits which are valid in flamup are described below.

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-7

exd10

exd10 specifies the name of a function which can be used
to process the records of the decompressed file before
they are written.

Syntax exd10=exit specification

Values exit specification

In this version, only exd10 may be specified for exit
specification.

Description exd10 defines a function which processes the records of

the decompressed file(s) before they are written. This
code must be generated by the user and linked to flamup
and the embedding user program (see chapter 6).

exd20

exd20 specifies the name of a function which can be used
to process the records of the compressed file after they
are read.

Syntax exd20=exit specification

Values exit specification

In this version, only exd20 may be specified for exit
specification.

Description exd20 defines a function which processes the records of

the compressed file(s) after they are read. This code must
be generated by the user and linked to flamup and the
embedding user program (see chapter 6).

The flamup Subprogram Call Chapter 3

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-8

exk10

exk10 specifies the name of a function which can be used
to process the records of the original file after they are
read.

Syntax exk10=exit specification

Values exit specification

In this version, only exk10 may be specified for exit
specification.

Description exk10 defines a function which processes the records of

the original file(s) after they are read. This code must be
generated by the user and linked to flamup and the
embedding user program (see chapter 6).

exk20

exk20 specifies the name of a function which can be used
to process the records of the compressed file before they
are written.

Syntax exk20=exit specification

Values exit specification

In this version, only exk20 may be specified for exit
specification.

Description exk20 defines a function which processes the records of

the compressed file(s) before they are written. This code
must be generated by the user and linked to flamup and
the embedding user program (see chapter 6).

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-9

inuser_io

This parameter specifies that the user-defined input/output
routines should be used for the original file instead of
those provided by FLAM.

Syntax inuser_io

Values None

Description The original file(s) are read with the input/output routines

generated by the user. The usropn, usrget and usrcls
functions are required to do so; the usrput and usrpos
functions may be dummy functions (see chapter 5).

outuser_io

This parameter specifies that the user-defined input/output
routines should be used for the decompressed file instead
of those provided by FLAM.

Syntax outuser_io

Values None

Description The decompressed file(s) are read with the input/output

routines generated by the user. The usropn, usrput and
usrcls functions are required to do so; the usrget and
usrpos functions may be dummy functions (see chapter
5).

The flamup Subprogram Call Chapter 3

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-10

user_io

This parameter specifies that the user-defined input/output
routines should be used for the compressed file instead of
those provided by FLAM.

Syntax user_io

Values None

Description The compressed file(s) are read or written with the

input/output routines generated by the user. The usropn
and usrcls functions are always required to do so; usrput
is required additionally for the compression procedure and
usrget for the decompression procedure. usrpos is a
dummy function. The function which is not required
(usrget or usrput) may also be a dummy function (see
chapter 5).

Chapter 3 The flamup Subprogram Call

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

3-11

3.3 Linking flamup

flamup is installed in two prelinked modules, namely
flam_up.o and flam_upu.o. The flam_up.o module
contains dummy functions for the user input/output
routines and the user exits. The flam_upu.o module
contains no user input/output routines and no user exits.

flamup must be linked to the application program (xyz)
with the following command:

ld -o xyz /usr/lib/flame/flam_up.o xyz.c -lc

If the user wishes to use his own exits and/or his own
input/output routines, they must be linked to the
application program. In this case, the flam_upu.o module
must be used instead of flam_up.o.

It should be noted that all the user exits and/or
input/output routines must be generated by the user, and
not just certain ones. If the user wants to use just his own
exits or just his own input/output routines, he can link the
dummy routines flam_usrmod.o and flam_exitmod.o,
which are installed in /usr/lib/flame, for the other functions.

In this case, the command is as follows:

ld -o xyz /usr/lib/flame/flam_upu.o

/usr/lib/flame/flam_usrmod.o<D>

/usr/lib/flame/flam_exitmod.o xyz.c -lc

/usr/lib/flame/flam_usrmod.o and/or
/usr/lib/flame/flam_exitmod.o must be replaced by the
user's own modules.

Some UNIX systems require the runtime library /lib/crt0.o
to be specified in the link command as well, e.g. SCO
UNIX.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 4:

The Record Interface
f lamrec

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-3

4. The Record Interface flamrec

4.1 Functions of the Record Interface

The record interface, flamrec, consists of a series of
subprograms, which can be invoked by all programming
languages in which C functions can be used. With the
exception of the key description, which is used in a later
version, all arguments are represented using elementary
data types (long integer, string). The arguments are
transferred by means of pointers and not as values. The
rules concerning notation in section 2.5, Interfaces apply
here analogously.

Application programs which are written in C may include
the statement #include "flamincl.h". This C header file
contains the definitions of the symbolic constants and
return codes, as well as the structure of the key
description. These definitions must be transferred in the
same way for programs written in other languages.

All argument lists begin with an ID, which identifies the
compression file uniquely. This flmid argument contains
the address of the work area for the compressed file,
which was specified by flmopn, and must not be modified
until flmcls. All other arguments are only relevant to the
function to which they are transferred.

The returncode argument is likewise contained in every
argument list; it serves either to confirm successful
execution of a function or to report an error, if one has
occurred. All the codes and their meanings are listed in
Appendix A, Return Codes, together with the meaning of
the additional information supplied in the most significant
byte of the return code for all error types which occur in
connection with file accesses. As with the flamup
subprogram, the return codes of the record interface
functions can be converted to message numbers or output
with FLAM's internal message routine put_flmsg.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-4

The record interface comprises the following functions:

4.2 Programming the Record Interface at Com-
pression

The process of creating a FLAMFILE can be divided into
three phases:

- open sequence

- one or more compression cycles

- termination (function flmcls)

The open sequence always starts calling the flmopn func-
tion. Subsequently, flmopd and/or flmopf can be called if
flmopn was called with continue_param set. When both
functions are called, flmopd must come first and also ha-
ve continue_param set.

When flmopd or flmopf are not called by the application
program, FLAM uses implicit settings to generate such
calls internally. Default values used with the flam com-
mand and flamup calls are not effective here.

Function Purpose
Corres-
ponding
I-O calls

flmcls Terminate processing of original
file and close FLAMFILE

close

flmflu Terminate processing of original
file without closing FLAMFILE

fflush

flmget Reading original record
sequentially

(f)gets/
read

flamghd Reading common FLAM file
header

flmguh Reading user-specific FLAM file
header

flmopn,
flmopd,
flmopf

Opening a FLAMFILE create/
(f)open

flmphd Writing common FLAM file
header

flmpos Positioning to next FLAM file
header

flmpuh Writing user-sepcific FLAM file
header

flmput Writing original record
sequentially

(f)puts/
write

flmpwd Passing a password

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-5

Finally, if encryption is used, a password must be provided
by a flmpwd call.

In the second phase, one compression cycle must be
done for each file being compressed.

Such a cycle would normally begin with a flmphd call to
generate a common FLAM fileheader. Only when a single
file is compressed without encryption, this may be omitted.

If a FLAM fileheader was created, a user-specific header
may be appended by invoking flmpuh. With Secure
FLAMFILEs, this invocation is mandatory even if the
header data length is 0.

Now data can be submitted for compression by repeated
execution of flmput. Each such call passes a record in the
FLAM terminology, which can be later replicated
identically or with modified record attributes thanks to the
structure information kept by FLAM. FLAM collects the
data passed to it in the compression buffer and controls
compression and the resulting output without involving the
application program.

A compression cycle is terminated by a call to flmflu
which causes the remainder in the compression buffer to
be compressed and the output of the result. This function
also returns statistical information to the application.

Following this, a new compression cycle may be initiated
by another flmphd or the FLAMFILE can be closed by
calling flmcls.

Control is always returned to the invoking program. There
are no error exits and no error messages are generated
by the record interface. Rather, a return code is passed
back to the application.

4.3 Programming the Record Interface at

Decompression

As with compression, decompressing a FLAMFILE also
consists of three phases:

- open sequence

- decompression cycle(s)

- termination (function flmcls)

The open sequence here consists of the same function
calls as at compression. Only the direction of the flow of
information is reversed for some of the arguments, e.g.
the compression mode. They are returned to the applicati-
on.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-6

Every function used in the compression cycle has its
decompression counterpart that performs the
complementary operation. The complements for flmphd
and flmpuh are flmghd and flmguh, respectively, that for
flmput is flmget. A decompressin cycle is also terminated
with flmflu. In addition, there is a function, flmpos, which
advances the read position in a FLAMFILE to the
beginning of the next original file. This function has no
counterpart with compression.

Typically, a decompression cycle initially invokes flmghd
which returns details about the original file such as file
name, record format, etc. This may be followed by flmguh
to retrieve the user-specific header, if present.
Subsequent flmget calls retrieve one record per call, with
the last record of an original file being signalled by a
special return code. Skipping the remaining records of an
original file can be done by flmpos which positions to the
next file header. A flmflu terminates a decompression
cycle that may be followed by another cycle or by flmcls,
which terminates the processing. One flmflu or flmpos
per cycle is mandatory, all other calls are optional.

4.4 Description of flamrec Functions

The next section describes the functions of the record
interface in alphabetical order.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-7

flmcls

The flmcls (close) function terminates the access to the
record interface. After the final matrix has been
compressed during the compression procedure, the
compressed data is written in the FLAMFILE and the
FLAMFILE is closed. With Secure FLAMFILEs, a file
trailer is appended.

During the decompression procedure, only the FLAMFILE
is closed; any remaining original records are not
transferred.

Statistical information is returned as well if it has been
requested with flmopn (statistics

�
 0).

Syntax void flmcls (char **flmid,

long *returncode,

unsigned long *cputime,

unsigned long *records,

unsigned long *bytes,

unsigned long *byteofl,

unsigned long *cmprecs,

unsigned long *cmpbytes,

unsigned long *cmpbytofl);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 cputime This argument returns the current time in seconds units.

 records If statistical information has been requested with flmopn

(statistics � ��� �	
� ������� ����� �	� ����� ��
decompressed records which have been transferred with
flmput or flmget. The accumulated values of this counter
are only significant if complete files are processed.

 bytes If statistical information has been requested with flmopn

(statistics � ��� ���� �� !"#$� �#�!�$� ��# $!"%#� &' %(�#�
in the decompressed records which have been transferred
with flmput or flmget. The accumulated values of this
counter are only significant if complete files are
processed.

 byteofl If the accumulated value of the bytes argument exceeds

2,000,000,000, this counter is used for multiples of
2,000,000,000.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-8

 cmprecs If statistical information has been requested with flmopn
(statistics) *+, -./0 1234567- 26-4270 -.6 745862 9:
compressed records which were created during the
compression procedure or read during the decompression
procedure. This value is only significant if complete files
are processed.

 cmpbytes If statistical information has been requested with flmopn

(statistics) *+, -./0 1234567- 26-4270 -.6 745862 9: 8;-60
which were created during the compression procedure or
read during the decompression procedure. This value is
only significant if complete files are processed.

 cmpbytofl If the accumulated value of the cmpbytes argument

exceeds 2,000,000,000, this counter is used for multiples
of 2,000,000,000.

Dependencies With Secure FLAMFILEs, flmcls may only be invoked im-

mediately after flmflu or flmpos.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-9

flmflu

flmflu (flush) terminates the compression procedure for a
file; the remaining records in the block are compressed
and written with padding of the last FLAM record, where
necessary. The compressed file is not closed after flmflu
and the statistics counters are not reset. With Secure
FLAMFILEs, a member trailer is appended.

Syntax void flmflu (char **flmid,

 long *returncode,

 unsigned long *cputime,

 unsigned long *records,

 unsigned long *bytes,

 unsigned long *byteofl,

 unsigned long *cmprecs,

 unsigned long *cmpbytes,

 unsigned long *cmpbytofl);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 cputime This argument returns the current time in seconds units.

 records If statistical information has been requested with flmopn

(statistics < =>? @ABC DEFGHIJ@ EI@GEJC @AI JGHKIE LM
decompressed records which have been transferred with
flmput or flmget. The accumulated values of this counter
are only significant if complete files are processed.

 bytes If statistical information has been requested with flmopn

(statistics < =>? @ABC DEFGHIJ@ EI@GEJC @AI JGHKIE LM KN@IC
in the decompressed records which have been transferred
with flmput or flmget. The accumulated values of this
counter are only significant if complete files are
processed.

 byteofl If the accumulated value of the bytes argument exceeds

2,000,000,000, this counter is used for multiples of
2,000,000,000.

 cmprecs If statistical information has been requested with flmopn

(statistics < =>? @ABC DEFGHIJ@ EI@GEJC @AI
 number of

compressed records which were created during the
compression procedure or read during the decompression
procedure. This value is only significant if complete files
are processed.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-10

 cmpbytes If statistical information has been requested with flmopn
(statistics O PQR STUV WXYZ[\]S X\SZX]V ST\]Z[^\X _` ^aS\V
which were created during the compression procedure or
read during the decompression procedure. This value is
only significant if complete files are processed.

 cmpbytofl If the accumulated value of the cmpbytes argument

exceeds 2,000,000,000, this counter is used for multiples
of 2,000,000,000.

 Dependencies When compressing Secure FLAMFILEs, flmflu is permit-

ted only after flmpuh or flmput. When decompressing Se-
cure FLAMFILEs, flmflu must be preceded either by
flmget, flmghd, or flmguh.

 Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-11

flmget

The flmget (get record) function reads the next original
record sequentially. The data is transferred to the record
buffer of the invoking program. A special return code
indicates when a new file header is encountered.

Syntax void flmget (char **flmid,

long *returncode,

long *record_length,

char *record,

long *buffer_length);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 record_length This argument returns the length of the record which has

been read in bytes.

 record This argument is the record buffer.

 buffer_length This argument contains the length of the record buffer in

bytes.

Dependencies flmget may only be used at decompression. With

encrypted FLAMFILEs, a password must be provided via
flmpwd before the first invocation of flmget.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-12

flmghd

flmghd (get file header) allows retrieving the file attributes
of the original file during decompression if they were
stored in the FLAMFILE during compression.

If the FLAMFILE contains several file headers (see
flmphd), the last file header found by FLAM is transferred
with flmghd.

Syntax void flmghd (char **flmid,

long *returncode,

long *filename_length,

char *filename,

long *organization,

long *record_format,

long *record_size,

char *record_delimiter,

struct kd *key_description,

long *block_size,

long *print_control,

char *system);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 filename_length This argument contains the length of the buffer area in

which the name of the original file must be returned. The
actual length is also returned by it.

 filename This argument specifies the buffer area in which the name

of the original file must be returned. The name is saved
there in the form of a character string. If the area is not
long enough, only the number of characters in the name
which the area can actually hold are returned.

 organization This argument returns a value for the organization of the

original file. The possible values and their meanings,
some of which refer to organization types which either do
not exist at all in UNIX or which are not supported by it,
are as follows:

0 sequential
1 index-sequential
2 relative
3 direct access

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-13

4 no record structure
5 library
6 physical

 record_format This argument returns a value for the record format of the

original file. The possible values and their meanings,
some of which refer to record formats which do not exist in
UNIX, are as follows:

0 variable

1 fixed

2 undefined

3 stream

8 var/blocked

9 fix/blocked

16 var/blocked/spanned

17 fix/blocked/standard

18 eaf

24 vfc

32 var_4b

40 var_ascii

48 var_ebcdic

 record_size This argument returns the record size of the original file.

The value 0 is set for variable record sizes and for the
stream record format.

 record_delimiter This argument specifies the record delimiter for the

stream record format. The character string is 4 bytes long
(corresponding to a long integer).

The record_delimiter has the following structure:

The most significant byte contains the number of bytes. If
the number of bytes is 1, the least significant byte
contains the record delimiter. If the number of bytes is 2,
the second least significant byte contains the first byte of
the record delimiter and the least significant byte contains
the second byte of this delimiter, e.g.:

0x0100000a record delimiter LF (0x0a)
0x02000d0a record delimiter CR/LF (0x0d0a)

 key_description This argument is reserved for future extensions.

 block_size This argument is reserved for future extensions.

 print_control This argument is reserved for future extensions.

 system This argument consists of two bytes and is used to return

a code for the operating system in which the FLAMFILE
was created. The meaning of this hexadecimal code is as
follows:

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-14

00 00 Unknown system

00 80 MS-DOS

00 81 MS-DOS large model

00 82 MS-DOS extended model

00 C0 OS/2

01 01 IBM OS-MVS

01 02 IBM DOS/VSE

01 03 IBM VM

01 04 IBM Linux for S/390 or zSeries

01 05 IBM DPPX/370

01 06 IBM AIX

02 01 UNISYS OS1100

03 01 DEC OpenVMS

03 02 DEC ULTRIX

04 01 SIEMENS BS2000

04 02 SIEMENS SINIX

04 03 SIEMENS SYSTEM V

05 01 NIXDORF 886X

09 01 TANDEM GUARDIAN

0A 00 PRIME

0B 01 STRATUS VOS

0B 02 STRATUS FTX

0C 01 Hewlett Packard HP-UX

0D 01 BULL GCOS

0D 02 BULL UNIX

0E 02 APPLE A/UX

0F 01 SUN OS

0F 02 SUN SOLARIS

11 XX INTEL 80286

12 XX INTEL 80386

13 XX INTEL 80486

15 XX Motorola 68000

XX 01 XENIX

XX 02 SYSTEM V

XX 03 OSF

XX 04 UNIX

Dependencies flmghd may only be used at decompression. It may be

called to retrieve the attributes of the first member of a
FLAMFILE, is FLAM returns code 1 after the opening
sequence (flmopn / flmopd / flmopf). The attributes of a
subsequent member are available if a preceding flmget
returns with code 6.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-15

flmguh

The flmguh (get user header) function is used to recover
the data from the user-specific FLAM file header during
the decompression procedure. It is only allowed during
this procedure and immediately following an flmghd call.

Syntax void flmguh (char **flmid,

long *returncode,

long *user_attributes_length,

char *user_attributes);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 user_attributes_ This argument transfers the length of the memory area in
 length in which the user-specific FLAM file header must be

saved. It returns the length which is actually used.

 user_attributes This argument returns the user-specific FLAM file header.

Dependencies flmguh may only be used at decompression. It returns

data from the user-specific header that were stored with
flmpuh.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-16

flmopd

The flmopd (open/file description) function enables special
attributes of the FLAMFILE to be set or interrogated
explicitly. This call is not necessarily mandatory. If it is not
executed during the compression procedure, implicit
values are used instead for the relevant attributes of the
FLAMFILE. These are specified, where applicable,
together with the descriptions of the various arguments.

flmopd can only be invoked following flmopn.

Syntax void flmopd (char **flmid,

long *returncode,

long *continue_param,

long *filename_length,

char *filename,

long *organization,

long *record_format,

long *record_size,

char *record_delimiter,

struct kd *key_description,

long *block_size,

long *close_disposition,

long *device);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the func-
tion is being executed. It is set by the flmopn function and
must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking
program.

 continue_param This argument indicates whether or not more setting data

should subsequently be transferred with an flmopf call.

0 No flmopf call

Other values flmopf call follows

 filename_length This argument transfers the length of the area for the

name of the FLAMFILE which must be opened and
returns the actual length of this name.

 filename This argument is the area in which the name of the

FLAMFILE which must be opened is returned.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-17

 organization This argument transfers and returns a code for the
organization of the FLAMFILE which must be opened.

The possible values are:

0 sequential

Implicit value (at compression): 0.

 record_format This argument transfers and returns a code for the record

format of the FLAMFILE which must be opened.

Valid values are:

0 var with mode=adc/cx8/vr8
1 fixed with mode=adc/cx8/vr8
3 stream only with mode=cx7

Implicit value (at compression): 1.

 record_size This argument passes and returns the maximum record

size of the FLAMFILE to be opened.

 Implicit value (at compression): 512.

 record_delimiter This character string is 4 bytes long (corresponding to a

long integer).

The structure of the record_delimiter is described under
the flmghd function.

 key_description The argument is reserved for future extensions.

 block_size This argument is reserved for future extensions.

 close_disposition This argument is reserved for future extensions.

 device This argument is used to activate the user-defined

input/output. These routines must be made available
instead of the input/output instructions and linked to the
application program.

7 User input/output

Other values Standard

Implicit value (at compression): 0.

Dependencies flmopd is only permitted after a call to flmopn with

continue_param b c. The flmopd call itself must have
continue_param b c, if flmopf is to be called subsequently.

 When called with device=7, the application program must

be linked with user-I/O routines as described in section
5.2.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-18

flmopf

The flmopf (open FLAM settings) function enables the
FLAM settings to be set or interrogated explicitly.This call
is not necessarily mandatory. If it is not executed during
the compression procedure, implicit values are used
instead for the relevant settings. These are specified,
where applicable, together with the descriptions of the
various arguments.

flmopf can only be used as the final function call of an
open sequence, in other words only after flmopd if this is
invoked or only after flmopn if it is not.

Syntax void flmopf (char **flmid,

long *returncode,

long *flam_version,

long *flam_code,

long *comp_mode,

long *max_buffer,

long *fileheader,

long *max_records,

struct kd *key_description,

long *block_mode,

char *exitroutine_comp,

char *exitroutine_decomp);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking
program.

 flam_version The value of this argument must always be 2.

 flam_code During compression, this argument specifies the character

set which must be used to write the character-coded
information in the FLAMFILE. This information is returned
during the decompression procedure.

0 EBCDIC
1 ASCII

Implicit value (at compression): 1.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-19

 comp_mode During compression, this argument specifies which

compression and/or encryption method to apply. This
information is returned at decompression.

The following hexadecimal (decimal) values are permitted:

Implicit value (at compression): 0.

 max_buffer During compression, this argument specifies the

maximum buffer size which is to be used. This information
is returned as a number of bytes during decompression.

The buffer size is specified in either bytes or Kbytes. All
values between 1 and 2,621,440 are valid. Details on how
this value is interpreted and the buffer sizes actually used
are found in the description of the maxbuffer parameter in
section 2.3.

Implicit value (at compression): 32 Kbytes.

 fileheader During decompression, the information returned by this

argument indicates whether or not the FLAMFILE contains
a FLAM file header. This determines whether or not a
subsequent flmghd call is meaningful.

The argument is not used during the compression.

0 No FLAM file header
1 FLAM file header

Implicit value (at compression): 0.

 max_records During compression, this argument specifies the

maximum number of records which are to be used per
matrix. This information is returned during decompression.

Implicit value (at compression): 255.

Encryption method

Compression
method

none

FLAMenc

AES

cx8

0x00 (0)

not
permitted

not
permitted

cx7

0x01 (1)

not
permitted

not
permitted

vr8

0x02 (2)

not
permitted

not
permitted

adc

0x03 (3)

0x13 (19)

0x23 (35)

ndc

0x0B (11)

0x1B (27)

0x2B (43)

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-20

 key_description This argument is reserved for future extensions.

 block_mode This argument is reserved for future extensions.

 exitroutine_comp This argument contains the name of a user exit, in other

words an executable program which is invoked each time
the FLAMFILE is accessed during compression. This
program must be linked to the application program as a C
function with the name exk20. The user exit is not invoked
if the name begins either with a blank (X'20') or with a
binary zero (X'00').

If the user exit exitroutine_comp modifies the compressed
record, a corresponding user exit exitroutine_decomp
must be specified for decompression, so that the changes
are undone again before the record is processed by
FLAM.

 exitroutine_decomp This argument contains the name of a user exit, in other

words an executable program which is invoked each time
the FLAMFILE is accessed during decompression. This
program must be linked to the application program as a C
function with the name exd20.

The user exit is not invoked if the name begins either with
a blank (X'20') or with a binary zero (X'00').

A user exit exitroutine_decomp must be specified if
FLAMFILE records have been modified during the
compression procedure by a user exit exitroutine_comp
and all the changes need to be undone again by this exit.

Dependencies flmopf may only be invoked immediately after a call to

flmopn or flmopd with continue_param d ef

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-21

flmopn

The flmopn (open) function starts the open sequence for a
FLAMFILE. It can be followed by a flmopd and/or flmopf
call, in order to set or query the attributes of the
FLAMFILE or the FLAM settings.

Syntax void flmopn (char **flmid;

long *returncode;

long *continue_param;

long *flam_open;

char *filename;

long *statistics);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the func-
tion is being executed. It is set by the flmopn function and
must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 continue_param This argument indicates whether or not more setting data

should subsequently be transferred with an flmopd or
flmopf call.

0 No more calls

Other values More calls follow

 flam_open This argument specifies the FLAMFILE processing mode.

0 input (read FLAMFILE, i.e. decompress)

1 output (write FLAMFILE, i.e. compress)

 filename This argument transfers the name of the FLAMFILE. The

string must be terminated with a zero byte (binary zero).
The file name is returned by the flmopd function.

If stdin/stdout are used, the first byte contains either a
binary zero or a blank.

 statistics This argument specifies whether or not statistical

information is desired at the end of the compression
procedure.

0 No statistics

Other values Statistical information returned

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-22

Dependencies None.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-23

flmphd

The flmphd (put file header) function is only allowed for
the compression procedure. It generates a common file
header, which describes the file format of the original
records that are transferred subsequently. If several
different files are compressed into a single FLAMFILE, a
separate file header can be generated for each file with
the flmphd function.

FLAM returns this file header information during the
decompression procedure if it has been requested to do
so (with flmghd).

Syntax void flmphd (char **flmid,

 long *returncode,

 long *filename_length,

 char *filename,

 long *organization,

 long *record_format,

 long *record_size,

 char *record_delimiter,

 struct kd *key_description,

 long *block_size,

 long *print_control,

 char *system,

 long *continue_param);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 filename_length This argument contains the length of the buffer area in

which the name of the original file is transferred.

 filename This argument specifies the buffer area in which the name

of the original file is transferred. The name is saved there
as a string and terminated with '\0'.

 organization This argument transfers a code for the organization of the

original file.

The permissible values are described under the flmghd
function.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-24

 record_format This argument transfers a code for the record format of
the original file.

The permissible values are described under the flmghd
function.

 record_size This argument transfers the maximum record size of the

original file. The permissible values are described under
the flmghd function.

 record_delimiter The record delimiter is saved in this argument if the record

format has been specified as stream. The character string
is 4 bytes long (corresponding to a long integer).

The structure of the record_delimiter is described under
the flmghd function.

 key_description This argument is reserved for future extensions.

 print_control This argument is reserved for future extensions.

 system This argument consists of two bytes and is used to

transfer a code for the operating system in which the
FLAMFILE was created.

 The list of valid values is listed with flmghd.

 continue_param This argument indicates whether or not more information

for the FLAM file header should subsequently be
transferred with an flmpuh call.

0 No more information

Other values More information

Dependencies flmphd may only be used at compression and only if

flmopf was called before with fileheader=1. Calls to flmphd
with continue_param g 0 or after flmpwd must be followed
immediately by flmpuh.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-25

flmpos

The flmpos (position) function can be used to advance to
the end of the data in an original file during the
decompression procedure, in order to read the file header
of the next file.

Syntax void flmpos (char **flmid;

 long *returncode;

 long *position);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 position This argument effects a jump to the end of the data in an

original file during a decompression procedure with
99,999,998, in other words either to the next FLAM file
header or to the end of the FLAMFILE.

Dependencies flmpos may only be used at decompression.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-26

flmpuh

The flmpuh (put user header) function enables additional
information with any structure to be saved in the
FLAMFILE. This information is inserted in the form of a
string and can be made available during the
decompression procedure with flmguh (the
complementary function).

The flmpuh function is only allowed during the
compression procedure and immediately following an
flmphd call.

Syntax void flmpuh (char **flmid,

 long *returncode,

 long *user_attr_length,

 char *user_attributes);

Arguments

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 user_attr_length This argument passes the length of the user-specific

header (maximum length 32732 bytes).

 user_attributes This argument specifies a memory area containing the

user-specific header, the contents of which can be freely
defined by the user.

Dependencies flmpuh may only be called at compression. It may be used

only immediately after flmphd and is mandatory when a
Secure FLAMFILE is being created.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-27

flmput

The flmput (put record) function transfers one original
record at a time for compression.

Syntax void flmput (flmid, returncode, record_length, record)

 char **flmid,

 long *returncode,

 long *record_length,

 char *record);

Description

 flmid The contents of flmid is a pointer to a character string.

This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 record_length This argument contains the record length in bytes.

 record This argument is the record buffer.

Dependencies flmput may only be used at compression.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The Record Interface Chapter 4

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-28

flmpwd

Mit der Funktion flmpwd (password) wird beim Komprimie-
ren ein Kennwort zum Ver-, beim Dekomprimieren zum
Entschlüsseln der Komprimatsdaten übergeben.

Syntax void flmpwd (char **flmid,

 long *returncode,

 long *pwd_length,

 char *pwd);

Arguments

 flmid The contents of flmid is a pointer to a character string.
This argument identifies the FLAMFILE for which the
function is being executed. It is set by the flmopn function
and must not be changed until flmcls is done.

 returncode This argument returns a return code to the invoking

program.

 pwd_length This argument contains the password's length in

characters.

 pwd This argument is the buffer containing the password

string.

Dependencies flmpwd may only be used when compression or

decompression is done with encryption/decryption.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 4 The Record Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

4-29

4.5 Linking Record Interface Functions
 to Application Programs

FLAM's record interface is installed in two prelinked
modules, namely flam_rec.o and flam_recu.o. The
flam_rec.o module contains the dummy functions for the
user input/output and the user exits. The flam_recu.o
module contains no user input/output routines and no user
exits.

The record interface must be linked to the user program
(xyz) with the following command:

ld -o xyz /usr/lib/flame/flam_rec.o xyz.c -lc

If the user wishes to use his own exits and/or his own
input/output routines, they must be linked to the
application program. In this case, the flam_recu.o module
must be used instead of flam_rec.o.

It should be noted that all the user exits and/or
input/output routines must be generated by the user, and
not just certain ones.If the user wants to use just his own
exits or just his own input/output routines, he can link the
dummy routines flam_usrmod.o and flam_exitmod.o,
which are installed in /usr/lib/flame, for the other functions.

In this case, the command is as follows:

ld -o xyz /usr/lib/flame/flam_recu.o

/usr/lib/flame/flam_usrmod.o <D>

/usr/lib/flame/flam_exitmod.o xyz.c -lc

/usr/lib/flame/flam_usrmod.o and/or
/usr/lib/flame/flam_exitmod.o must be replaced by the
user's own modules.

Some UNIX systems require the runtime library /lib/crt0.o
to be specified in the link command as well.

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 5:

The User Input/Output
Interface

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-3

5. The User Input/Output Interface

5.1 How to Use the User Input/
 Output Interface

FLAM uses the standard functions to input and output
original files, decompressed files and FLAMFILEs. It is
however also possible to process data in a non-supported
format, or on hardware which is not supported by UNIX,
with the aid of programs which invoke the FLAM functions
of the record interface. The necessary input and output
routines must be made available in order to do so. FLAM
uses these routines for the file concerned if user
input/output (device=7) is specified in the device argument
when the FLAM flmopd function is invoked.

The most important difference between the user
input/output interface and the record interface is that the
user program is the invoking program and FLAM the
executive program for the record interface functions. User
inputs/outputs, on the other hand, are themselves
executive routines and are invoked by FLAM. They thus
have no control over the order in which they are activated
and must respond context-sensitively to each call. If they
need RAM in order to do so, the file is assigned an area of
1 Kbyte for each usropn call; the same area remains
assigned each time this file is called subsequently.

Since the FLAM concept always entails reading data from
one file and writing it in another, user input/output routines
are simply alternative file accesses from FLAM's point of
view, irrespective of the actions which are actually
performed by them.

User input/output routines must therefore incorporate the
following functions:

• usrcls

• usrget

• usropn

• usrpos

• usrput

The User Input/Output Interface Chapter 5

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-4

These functions must conform to the interface
conventions, i.e. they must be defined with the specified
name, the type and length of their arguments must match
and their return codes must reflect the success or error
situation correctly.

Instructions for linking user input/output routines can be
found at the end of this chapter.

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-5

usrcls

This function closes a file.

Syntax void usrcls (char **workio,

 long *returncode);

Arguments

 workio This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time a user input/output
function is invoked and which is not altered by FLAM
between the calls.

 returncode This argument returns a return code to the invoking

program.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The User Input/Output Interface Chapter 5

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-6

usrget

This function reads a record sequentially and transfers it
to FLAM.

Syntax void usrget (char **workio,

 long *returncode,

 long *record_length,

 char *record,

 long *buffer_length);

Arguments

 workio This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time a user input/output
function is invoked and which is not altered by FLAM
between the calls.

 returncode This argument returns a return code to the invoking

program.

 record_length This argument returns the length of the record which has

been read in bytes.

 record This argument is the record buffer.

 buffer_length This argument contains the length of the record buffer in

bytes.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-7

usropn

This function opens the file whose specification is
transferred by the filename argument.

Syntax void usropn (char **workio,

 long *returncode,

 long *file_open,

 char *fname,

 long *organization,

 long *record_format,

 long *record_size,

 long *block_size,

 struct kd *key_description,

 long *device,

 char *record_delimiter,

 char *pad_char,

 long *print_control,

 long *close_disposition,

 long *access,

 long *filename_length,

 char *fname);

Arguments

 workio This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time a user input/output
function is invoked and which is not altered by FLAM
between the calls.

When usropn is invoked, the name of the file which must
be processed is at the start of the area and the remainder
of the area is filled with binary zeros.

 returncode This argument returns a return code to the invoking

program.

 file_open This argument specifies the processing mode of the file

which must be opened.

0 input (read, i.e. decompress)

1 output (write, i.e. compress)

 filename This argument passes the specification for the file which

must be opened. The string must be terminated with a
zero byte (binary zero). The specification may also be a
logical name. The actual file name should be returned by
this argument

The User Input/Output Interface Chapter 5

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-8

The contents of this argument are also located at the start
of the memory area which was passed with the workarea
argument.

 organization This argument is reserved for future extensions.

 record_format This argument transfers and returns a code for the record

format of the file which must be opened.

The values are defined as follows:

0 variable/var_2b

1 fixed

2 undefined

3 stream

18 eaf

32 var_4b

40 var_ascii

48 var_ebcdic

 record_size This argument transfers the record size of the file and

may return this value for an input file. The value 0 is set
for variable record formats. A value other than 0 is
required for the fixed and undefined record formats.

 block_size This argument is reserved for future extensions.

 key_description The argument is reserved for future extensions.

 device This argument is reserved for future extensions.

 record_delimiter This argument specifies the record delimiters which must

be used when files with the stream record format are
opened. If the argument contains the value 0, the default
delimiters are used. If not, the record delimiter is the
contents of this argument.

The record_delimiter has the following structure:

The most significant byte contains the number of bytes. If
the number of bytes is 1, the least significant byte
contains the record delimiter. If the number of bytes is 2,
the second least significant byte contains the first byte of
the record delimiter and the least significant byte contains
the second byte of this delimiter, e.g.:

"0a 00 00 01" UNIX record delimiter

"0a 0d 00 02" MS-DOS record delimiter

 pad_char This argument transfers a padding character, which is

used to pad short fixed-size records when they are output.

 print_control This argument is reserved for future extensions.

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-9

 close_disposition This argument is reserved for future extensions.

 access This argument is reserved for future extensions.

 filename_length This argument passes the length of the string (filename)

of the file which must be opened and returns the length of
the name.

 fname This argument is reserved for future extensions.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The User Input/Output Interface Chapter 5

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-10

usrpos

The usrpos function increments the record key when a
relative file is decompressed if gaps need to be generated
in the decompressed file.

This function is not used (it is a dummy function).

Syntax void usrpos (char **workio,

 long *returncode,

 long *position);

Arguments

 workio This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time a user input/output
function is invoked and which is not altered by FLAM
between the calls.

 returncode This argument returns a return code to the invoking

program.

 position This argument transfers the number of record positions

which must be skipped.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

Chapter 5 The User Input/Output Interface

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-11

usrput

This function writes a record which has been transferred
by FLAM sequentially.

Syntax void usrput (char **workio,

 long *returncode,

 long *record_length,

 char *record);

Arguments

 workio This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time a user input/output
function is invoked and which is not altered by FLAM
between the calls.

 returncode This argument returns a return code to the invoking

program.

 record_length This argument contains the record length in bytes.

 record This argument is the record buffer.

Return codes A description of the return codes can be found in

Appendix A, Return codes.

The User Input/Output Interface Chapter 5

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

5-12

5.2 Linking User Input/Output Routines
 to Application Programs

Data access with the aid of user input/output routines is
supported by FLAM both for subprogram interface calls
and for record interface calls.

In order to be able to access data with FLAM by means of
user input/output routines, the associated linked object
files must be made available for all the access functions
described above; any functions which are not required can
be installed as dummy functions.

How to link the routines to the application program is
described in section 3.3, "Linking flamup ", as well as in
section 4.5, "Linking Record Interface Functions to
Application Programs".

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 6:

The User Exits

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-3

6. The User Exits

A user exit is a user-provided program that is activated by
FLAM and which communicates with it through a defined
interface.

FLAM supports two sorts of user exits:

• exits activated when files are accessed, i.e. opened,

closed, read, or written, also called access exits;

• an exit for automatic key management, also called key

exit.

In order to be available in FLAM, the access exits must be
(statically) linked with FLAM (see section 6.1.2), whereas
the key exit is created as a shared object and linked
dynamically, i.e. at runtimes. For details see section 6.2.2.

6.1 User Exits for File Accesses (Access
Exits)

These exits are programs which are activated by FLAM
with each operation on the associated file. When the file is
opened or accessed for reading, the user exit is activated
immediately after the file has been opened or after a
record has been transferred to the read buffer, and before
FLAM begins processing.

When the file is closed or accessed for writing, the user
exit is activated immediately before the closing or before
the output takes place, and after FLAM has finished
processing. The user exit can evaluate and manipulate the
record concerned, or possibly insert additional records,
before handing control back to FLAM. At the same time,
FLAM expects the user exit to supply instructions in the
form of a return code, telling it either how to continue
processing or that it should abort due to an error.

User exits can be specified for FLAMFILEs when calls are
made via the subprogram or record interface. If FLAM
calls are made using the record interface functions, only
user exits for the FLAMFILE can be activated, since FLAM
is not able to read or write the original and decompressed
files. For FLAM calls via the subprogram interface flamup,
access exits can be specified both for FLAMFILEs as well
as for original or decompressed files. The record interface
flamrec only allows activating exits for FLAMFILEs since
access to original or decompressed files then lies with the
application program.

FLAM has the following access exits for compression:

exk10 This is activated after a record in the original file

has been read.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-4

exk20 This is activated before a record in the FLAMFILE

is written.

FLAM has the following user exits for decompression:

exd10 This is activated before a record in the decom-

pressed file is written.

exd20 This is activated after a record in the FLAMFILE

has been read.

The user exits must be linked to the subprogram interface
(flam_upu.o) or to the record interface (flam_recu.o) and
to the application program.This means that at present only
one function can be used per user exit. Any user exits
which are not required by an application program must be
installed as dummy functions (please refer to sections 3.3
and 4.5 for details of how to link the programs).

Chapter 7 contains examples of user exits, as well as a
program for compressing and decompressing files (similar
to FLAM).

6.1.1 Programming the Access Exits

When programming user exits for file accesses, their
execution environment must be taken into consideration.
For example, operator interventions must be avoided, if
their use in batch processing cannot be ruled out.
Likewise, output to displays might result in undesirable
distortions to FLAM's processing logs.

Storage areas made available through pointers must not
be modified beyond the length specified in the call.
Storage for inserted records must be requested and
released by the exit itself.

The following pages describe the syntax of the interfaces
between FLAM an the user exits in detail.

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-5

exd10

This user exit can be used during the decompression
procedure for accesses to the decompressed file, in order
to postprocess the records which must be output. It is
activated by the flamup subprogram by means of the
parameter exd10=exit-specification in the argument
parameter_string.

It takes over control after the decompressed file is
opened, before each write access and before the file is
closed; the record which must be written is made available
to it prior to write accesses. It sends a return code when it
returns control to FLAM.

Syntax void exd10 (long *functioncode,

 long *returncode,

 char **record_pointer,

 long *record_length,

 char *work);

Arguments

 functioncode This argument transfers a function code to the user exit.

The valid values are as follows:

0 First call for the file after open

4 Record made available in record buffer

8 Last call for the file before close

 returncode The user exit sends a return code to FLAM with this

argument (see separate description of return codes and
their meanings).

 record_pointer This argument contains a pointer to a character string. If a

call is specified with function code 4, it contains the
address of the record which must be written. This address
can be modified by the user exit, for example in order to
insert a record.

 record_length If a call is specified with function code 4, this argument

contains the length of the record which must be written.
This length can be modified by the user exit, for example
in order to insert a record.

 work This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time the user exit is invoked
and which is not altered by FLAM between the calls.
When it is invoked for the first time (function code 0), the
name of the file is at the start of the area and the
remainder of the area is initialized with binary zeros.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-6

Return codes Value Meaning

0 Transfer record or no errors

4 Don't transfer record

8 Insert record. The buffer address and the

length of the record which is to be inserted
must be returned in the record_pointer and
record_length arguments. The user exit is
invoked again for the original record

12 Terminate compression procedure

16 Error in user exit; abnormal termination

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-7

exd20

This user exit can be used during the decompression
procedure for accesses to the FLAMFILE, in order to
preprocess the records which have been read.It can be
activated either by the flamup subprogram or by the flmopf
function of the record interface.

It is specified in the subprogram call by means of the
parameter exd20=exit-specification in the argument
parameter_string and in the flmopf function by means of
the argument exitroutine_decomp.

It takes over control after the FLAMFILE is opened, after
each read access and before the file is closed; the record
which has been read is made available to it after read
accesses. It sends a return code when it returns control to
FLAM.

Syntax void exd20 (long *functioncode,

 long *returncode,

 char **record_pointer,

 long *record_length,

 char *work);

Arguments

 functioncode This argument transfers a function code to the user exit.

The valid values are as follows:

0 First call for the file after open

4 Record made available in record buffer

8 Last call for the file before close

 returncode The user exit sends a return code to FLAM with this

argument (see separate description of return codes and
their meanings).

 record_pointer This argument contains a pointer to a character string.

The pointer is 4 bytes long and thus corresponds to a long
integer. If a call is specified with function code 4, it
contains the address of the record which has been read.
This address can be modified by the user exit, for example
in order to insert a record.

 record_length If a call is specified with function code 4, this argument

contains the length of the record which has been read.
This length can be modified by the user exit, for example
in order to insert a record.

 work This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time the user exit is invoked
and which is not altered by FLAM between the calls.
When it is invoked for the first time (function code 0), the
name of the file is at the start of the area and the
remainder of the area is initialized with binary zeros.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-8

Return codes Value Meaning

0 Transfer record or no errors

4 Don't transfer record

8 Insert record. The buffer address and the

length of the record which is to be inserted
must be returned in the record_pointer and
record_length arguments. The user exit is
invoked again for the original record

12 Terminate compression procedure

16 Error in user exit; abnormal termination

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-9

exk10

This user exit can be used during the compression
procedure to process the records in the original file after
they have been read. It is activated by the flamup
subprogram by means of the parameter exk10=exit-
specification in the argument parameter_string.

It takes over control after the original file is opened, after
each read access and before the file is closed; the record
which has been read is made available to it after read
accesses. It sends a return code when it returns control to
FLAM.

Syntax void exk10 (long *functioncode,

 long *returncode,

 char **record_pointer,

 long *record_length,

 char *work);

Arguments

 functioncode This argument transfers a function code to the user exit.

The valid values are as follows:

0 First call for the file after open

4 Record made available in record buffer

8 Last call for the file before close

 returncode The user exit sends a return code to FLAM with this

argument (see separate description of return codes and
their meanings).

 record_pointer This argument contains a pointer to a character string.

The pointer is 4 bytes long and thus corresponds to a long
integer. If a call is specified with function code 4, it
contains the address of the record which has been read.
This address can be modified by the user exit, for example
in order to insert a record.

 record_length If a call is specified with function code 4, this argument

contains the length of the record which has been read.
This length can be modified by the user exit, for example
in order to insert a record.

 work This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time the user exit is invoked
and which is not altered by FLAM between the calls.
When it is invoked for the first time (function code 0), the
name of the file is at the start of the area and the
remainder of the area is initialized with binary zeros.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-10

Return codes Value Meaning

0 Transfer record or no errors

4 Don't transfer record

8 Insert record. The buffer address and the

length of the record which is to be inserted
must be returned in the record_pointer and
record_length arguments. The user exit is
invoked again for the original record

12 Terminate compression procedure

16 Error in user exit; abnormal termination

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-11

exk20

This user exit can be used during the compression
procedure to process the records in the FLAMFILE before
they are written. It can be activated either by the flamup
subprogram or by the record interface.

It is specified in the subprogram call by means of the
parameter exk20=exit specification in the argument
parameter_string and in the flmopf function by means of
the argument exitroutine_comp.

It takes over control after the FLAMFILE is opened, before
each write access and before the file is closed; the record
which must be written is made available to it before write
accesses. It sends a return code when it returns control to
FLAM.

Syntax void exk20 (long *functioncode,

 long *returncode,

 char **record_pointer,
 long *record_length,

 char *work);

Arguments

 functioncode This argument transfers a function code to the user exit.

The valid values are as follows:

0 First call for the file after open

4 Record made available in record buffer

8 Last call for the file before close

 returncode The user exit sends a return code to FLAM with this

argument (see separate description of return codes and
their meanings).

 record_pointer This argument contains a pointer to a character string.

The pointer is 4 bytes long and thus corresponds to a long
integer. If a call is specified with function code 4, it
contains the address of the record in the FLAMFILE which
must be written.

 record_length If a call is specified with function code 4, this argument

contains the length of the record which must be written.

 work This argument is a 1 Kbyte area, which is made available

by FLAM as a work area each time the user exit is invoked
and which is not altered by FLAM between the calls.
When it is invoked for the first time (function code 0), the
name of the file is at the start of the area and the
remainder of the area is initialized with binary zeros.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-12

Return codes Value Meaning

0 Transfer record or no errors

4 Don't transfer record

8 Insert record. The buffer address and the

length of the record which is to be inserted
must be returned in the record_pointer and
record_length arguments. The user exit is
invoked again for the original record. During
the decompression procedure, records
which have been inserted in this way must
be removed again by means of a
complementary user exit

12 Terminate compression procedure

16 Error in user exit; abnormal termination

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-13

6.1.2 Linking File Access Exits to
 Application Programs

FLAM supports calling user exits for file accesses both on
the subprogram interface level (flamup) as well as on the
record interface level (flamrec), the latter supporting
accesses to FLAMFILEs only.

In order to be able to process data records with FLAM by
means of these user exits, the associated linked object
files must contain all the access functions described
above; any functions which are not required may be
included as dummy functions.

User exits for file accesses are linked statically with FLAM
as described in section 3.3, "Linking flamup ", as well as in
section 4.5, "Linking Record Interface Functions to
Application Programs".

6.2 The User Exit for Automatic Key
 Management (Key Exit)

The user exits for automatic key management can be
activated via the subprogram interface flamup and - in
contrast to the access exits - throu the flam command, but
not through the record interface flamrec.

Another major difference is that a key exit routine is linked
dynamically. It is created as a shared object, and both the
name of the shared library and that of the called function
can be chosen freely and are passed to FLAM as a
parameter.

6.2.1 Programming the Key Exit

Key exit routines must also avoid interactive operations if
they are meant for use in batch processing. Display mes-
sages can be synchronized with FLAM logging by use of
the message and msglen arguments with function code -1
(version identification). At each execution, FLAM invokes
the key exit routine once with this function code and logs
the returned message text - if present - at an appropriate
place. With other function codes, message texts should
only be returned to indicate error causes.

Below is the detailed description of the interface between
FLAM abd the key exit routine.

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-14

kmfunc

This user exit can be used at encryption or decryption to
provide a password automatically. It is activated by the pa-
rameter -kmexit=exit specification in the flam command or
in the parameter_string argument of the subprogram call
flamup. The actual name used instead of kmfunc may be
any valid function name.

It sends a return code when it returns control to FLAM.

Syntax void kmfunc (signed long *functioncode,

 signed long *returncode,

 const unsigned long *parmlen,

 const unsigned char *param,

 unsigned long *datalen,

 unsigned char *data,

 unsigned long *ckylen,

 unsigned char *cryptokey,

 unsigned long *msglen,

 unsigned char *message);

Argumente

 functioncode This argument transfers a function code to the user exit.
The valid values are as follows:

-1 call for version identification

0 call for decryption

1 call for encryption

 returncode The user exit sends a return code to FLAM with this

argument (see separate description of return codes and
their meanings).

 parmlen When functioncode is 0 or 1, this argument contains the

byte length of the data in the param argument. That may
be an integer value between 0 and 256.

 param When parmlen > 0, this argument contains the exparm-

part of the exit specification in the -kmexit parameter (see
description of the parameter -kmexit in section 2.3).

 datalen When functioncode is 0 or 1, this argument contains the

byte length of the data in the data argument. That may be
an integer value between 0 and 512. For calls for encryp-
tion, it is set by the exit routine. For calls for decryption, it
is set by FLAM.

 data When datalen > 0 with calls for encryption (functioncode

1), the exit routine returns here the data required for re-
trieving the password needed for decryption. FLAM stores
these data in a user-specific FLAM file header. With calls
for decryption (functioncode 0), FLAM returns here these
data to the exit routine.

Chapter 6 The User Exits

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-15

 ckylen After a successful call to the exit routine with functioncode
0 or 1, this argument contains the byte length of the
password returned to FLAM in the cryptokey argument.
Maximum key length is 64 bytes.

 cryptokey In this argument, FLAM receives after exit calls with

functioncode 0 or 1 the password for encryption or
decryption with the length specified in ckylen.

 msglen Upon return to FLAM, this argument indicates the byte

length of the string in the message argument. Maximum is
128 bytes.

 message The exit routine may put here a message text which will be

output to the log file by FLAM.

Return codes Value Meaning

0 Success

otherwise Error

The User Exits Chapter 6

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

6-16

6.2.2 Creating a Key Exit

The key exit function may be given any valid function
name. The function must reside in a shared library
which will be opened by FLAM at execution time. For
information regarding the generation of shared libra-
ries please refer to the documentation of the compiler
used.

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Chapter 7:

Application Examples

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-3

7. Application Examples

This chapter illustrates FLAM's applications with
numerous examples. These demonstrate the various
options which are available for the flam command; C
programs and excerpts from C programs show how the
program interfaces can be used in practice. These
examples are supplemented where necessary by
instructions for linking the programs.

7.1 Commands

Only the parameters which are actually required are used
in the examples. If the values of the parameters are
required to vary from the default values, they must be
specified explicitly.

7.2 Compressing

7.2.1 One File into One File

A file called test.dat is compressed and the compressed
data is written in a file called test.cmp.

flam -compress -flamin=test.dat -flamfile=test. cmp

7.2.2 Several Files into One File

All the files which match the search pattern t*.dat are
compressed and the compressed data is written in a file
called test.cmp.

flam -compress -flamin=t*.dat -flamfile=test.cmp
-attributes=all -show=all

-show=all causes all the compression information to be
shown on the screen.

-attributes=all causes the names, file attributes and record
attributes of the original files to be saved in the
compressed file as well. They can then be shown on the
screen with the following command

flam -decompress -show=attributes -flamfile=test.cmp

without creating the decompressed files.

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-4

7.2.3 Several Files into Several Separate
Files

All the files which match the search pattern t*.dat are
compressed. The compressed data of each file is written
in a separate file, which is given the name of the original
file and a cmp suffix:

flam -compress -flamin= t*.dat -flamfile=[dat=cmp]

If the default directory were also to contain a file called
tvdaten.dat, for example, as well, the compressed data of
this file would be saved in the FLAMFILE called
tvcmpen.dat (see section 2.3.2, Output specifications).
The following notation should be preferred, to ensure that
the desired substitution rule is actually applied to the
suffix:

flam -compress -flamin=t*.dat -flamfile=[.dat=.cmp]

7.3 Decompressing

7.3.1 One File into One File

A file called test.cmp is decompressed and the
decompressed data is written in a file called test.dat. The
compressed file may comprise one or more original files.

flam -decompress -flamfile=test.cmp -flamout=test.dat

7.3.2 One Compressed File, Comprising
Several Original Files, into Separate
Files, Each Identical to One of the
Original Files

A compressed file containing the data of several different
original files, each with a FLAM file header (-
attributes=all), is decompressed.
The decompressed data of each original file is written in a
file with the same name and the same attributes:

flam -decompress -flamfile=test.cmp -flamout=[*]

7.3.3 Several Files into One File

All the files which match the search pattern t*.cmp are
decompressed and the decompressed data is written in a
file called test.dat:

flam -decompress -flamfile=t*.cmp -flamout=test.dat

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-5

7.3.4 Several Files into Several Separate
Files

All the files which match the search pattern t*.cmp are
decompressed. The decompressed data of each file is
written in a separate file, which is given the same name
and a dat suffix:

flam -decompress -flamfile=t*.cmp -flamout=[.cmp=.dat]

It should be noted in this connection that all the
compressed data in a single FLAMFILE is also
decompressed into a single file.
If -attributes=all was specified for the compression
procedure, the following decompress command

flam -decompress -flamfile=t*.cmp -flamout=[*]

can be used to create decompressed files with the original
names and the original attributes.

7.4 How to Use a Parameter File

The FLAM parameters do not necessarily need to be
specified directly in the command. They can also be
entered in a parameter file, which is then specified in the
command instead:

flam -parfile=param.dat

The file called param.dat contains the following
parameters:

For compression:

flamin=test.dat

flamfile=test.cmp

comp

For decompression:

flamfile=test.cmp

flamout=test.dat

decomp

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-6

7.5 How to Use the Subprogram Interface

Files can be compressed in a user program and
decompressed again by means of the flamup subprogram
interface. The call in a C user program is as follows:

flamup(id, rc, par_string, parlen);

id is the address of a 4 byte long field.

rc is the address of a 4 byte long numeric field, which
contains the return code after flamup has been executed.

par_string is the address of a string which contains the
parameters.

parlen is the address of a 4 byte long numeric field, which
contains the length of par_string.

par_string contains, for example:

"flamin=test.dat,flamfile=test.cmp,comp"

In this case, parlen contains the value 38.

The sample program below uses the subprogram
interface. The parameters are specified in the call in the
same way as in the flam command.

This program can be used as a user program with user
input/output routines and/or user exits:

/*

flamup call with user exit and/or user i/o

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include "flamincl.h"

void main (int argc, char** argv)

{ char *id; /* ID */

 unsigned long retco; /* Return code */

 long ip, is; /* Integer */

 char *po, *pq; /* Pointer */

 unsigned char *pp; /* Pointer */

 char string[100]; /* Character string */

 char parstring[1500]; /* Parameter string */

 retco = FLAM_NORMAL; /* Return code = ok */

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-7

 pp = parstring;

 is = 0;

 ip = 0;

 while (++ip < argc)

 { po = argv[ip]; /* Parameter after input area */

 pq = &string[0];

 while (*po != 0x00)

 { if ((*po != '-') && (*po != '+'))

 *pq++ = *po++;

 else

 po++;

 };

 pq = 0x00; / Contains parameter lists ? */

 po = &string[0];

 while ((*po != 0x00) && (*po != ',') && (*po != ' '))

 po++;

 if (*po == 0x00) /* Parameter without lists */

 { po = &string[0]; /* After parameter string */

 while (*po != 0x00)

 { *pp++ = *po++;

 is++;

 }

 }

 else

 { po = &string[0]; /* Parameter with list */

 do /* "d1 d2 ..." */

 { *pp++ = *po; /* "d1,d2,..." */

 is++; /* d1,d2,... */

 } while (*po++ != '='); /* After parameter string */

 *pp++ = '(';

 is++;

 if (*po == '"')

 po++;

 while (*po != 0x00)

 { if ((*po != ',') && (*po != '"') && (*po != ' '))

 { *pp++ = *po++;

 is++;

 }

 else

 { if (*po == '"')

 po++;

 else

 { *pp++ = ',';

 po++;

 is++;

 }

 }

 }

 if (*(pp - 1) == ',')

 { pp--;

 is--;

 }

 *pp++ = ')';

 is++;

 }

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-8

 *pp++ = ',';

 is++;

 }

 if (is 0)

 { *--pp = ' ';

 is--;

 }

/*

 flamup call

*/

 flamup(&id, &retco, parstring, &is);

 put_flmsg(retco); /* Return code output */

 return retco;

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-9

7.6 How to Use the Record Interface

7.6.1 Compressing a File

Data records are read in a user program and transferred
to FLAM's record interface for compression. The
information about the original file and the information
which is generated by the user is saved in the file header.

The names of the input and output files are entered
interactively.

/*

Example: Compress a file

The file header is written with a common part and a user part

*/

#include <stdio.h>

#include <time.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <fcntl.h>

extern int errno;

extern int sys_nerr;

#include "flamincl.h"

int main()

{ char *flmid; /* Record interface ID */

 char kname[100]; /* Name of compressed file */

 char oname[100]; /* Name of original file */

 long flcode; /* FLAM code */

 long modus; /* Compression mode */

 long statis; /* Statistics */

 long opmode; /* Open mode */

 long blkmode; /* Block mode */

 long header; /* File header */

 long prctrl; /* Feed control character */

 long reclength; /* Record length */

 long namlen; /* Length of file name */

 long sattrlen; /* Length of system-specific information */

 union { char c[4];

 char *p;

 } sysattr; /* System-specific information */

 char datrec[2048]; /* Data area */

 char system[2]; /* Operating system */

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-10

 long sanz; /* Max. no. of records / block */

 unsigned long maxb; /* Max. buffer size in KB */

 long lstpar; /* Last parameter */

 /* Compressed file */

 long blksk; /* Block size */

 long recfk; /* Record format */

 long recsk; /* Record size */

 long devk; /* Device */

 long orgak; /* Organization */

 union { char c[4];

 unsigned long i;

 } recdelk; /* Record delimiter */

 long cldispk; /* Close disposition */

 struct kd keydesck; /* Key description */

 /* Original file */

 long devo; /* Device */

 long orgao; /* Organization */

 long blkso; /* Block size */

 long recfo; /* Record format */

 long recso; /* Record size if fixed */

 union { char c[4];

 unsigned long i;

 } recdelo; /* Record delimiter */

 long cldispo; /* Close disposition */

 struct kd keydesco; /* Key description */

 char exk20[34]; /* Name of exit routine */

 char exd20[34]; /* Name of exit routine */

 char *ptr; /* Pointer */

 long il; /* Integer */

 unsigned long rc; /* Return code */

 unsigned long cputime; /* CPU time */

 unsigned long zks; /* Record counter */

 unsigned long zkb; /* Byte counter */

 unsigned long zkbofl; /* Byte counter overflow */

 unsigned long zunks; /* Record counter */

 unsigned long zunkb; /* Byte counter */

 unsigned long zunkbofl; /* Byte counter overflow */

 FILE *infile; /* Input file */

 long uattrlen; /* Length of user information */

 static char usrattr[50] = {"The file contains data belonging to

 application xyz"};

 /* Enter file name */

 printf("File name input: ");

 scanf("%s", oname);

 printf("File name output: ");

 scanf("%s", kname);

 /* Open original file */

 infile = fopen(oname, "r");

 if (infile == NULL)

 exit(1);

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-11

 /* Open FLAM */

 opmode = FLAM_C_OPEN_OUTPUT; /* Compress */

 statis = FLAM_C_STATISTIC; /* Statistics */

 lstpar = FLAM_C_MORE_PARAMETER;

 flmopn(&flmid, &rc, &lstpar, &opmode, kname, &statis);

 if (rc != FLAM_NORMAL)

 closinput(rc, infile);

 /* Specifications for compressed file */

 orgak = FLAM_C_ORG_SEQ;

 recfk = FLAM_C_RECFRM_FIX;

 recsk = 512;

 blksk = 0;

 cldispk = FLAM_C_CLOSE_REWIND;

 devk = FLAM_C_DEVICE_DISK;

 keydesck.keyparts = 0;

 il = 100;

 flmopd(&flmid, &rc, &lstpar, &il, kname, &orgak, &recfk, &recsk,

 recdelk.c, &keydesck, &blksk, &cldispk, &devk);

 if (rc != FLAM_NORMAL)

 closinput(rc, infile);

 /* Compression specifications */

 il = FLAM_C_VERSION; /* Version 2 */

 flcode = FLAM_C_CHAR_ASCII; /* Code of compressed file */

 modus = FLAM_C_MODUS_CX8; /* EIGHT_BIT mode */

 maxb = 32768; /* Buffer size */

 sanz = 255; /* No. of records per block */

 header = FLAM_C_FILEHEADER; /* File header */

 blkmode = FLAM_C_BLOCKMODE; /* FLAMFILE blocking mode */

 keydesco.keyparts = 0;

 exk20[0] = ' '; /* No exit routine */

 exd20[0] = ' ';

 flmopf(&flmid, &rc, &il, &flcode, &modus, &maxb, &header,

 &sanz, &keydesco, &blkmode, exk20, exd20);

 if (rc != FLAM_NORMAL)

 closinput(rc, infile);

 /* Output file header */

 namlen = strlen(oname);

 orgao = FLAM_C_ORG_SEQ; /* Organization seq. */

 recfo = FLAM_C_RECFRM_STREAM; /* Record format stream, text file */

 recso = 0;

 blkso = 0;

 prctrl = FLAM_C_PRINT_CTRL_NONE;

 system[0] = FLAM_C_SYSTEM_COMP; /* Computer / processor */

 system[1] = FLAM_C_SYSTEM_OS; /* Operating system */

 flmphd(&flmid, &rc, &namlen, oname, &orgao, &recfo, &recso,

 recdelo.c, &keydesco, &blkso, &prctrl, system, &lstpar);

 if (rc != FLAM_NORMAL)

 closfiles(rc, infile, &flmid);

 /* Output user-specific file header */

 uattrlen = strlen(usrattr);

 flmpuh(&flmid, &rc, &uattrlen, usrattr);

 if (rc != FLAM_NORMAL)

 closfiles(rc, infile, &flmid);

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-12

 /* Read and compress file */

 il = FLAM_NORMAL;

 ptr = fgets(datrec, 2048, infile);

 if (ptr == NULL)

 if (errno == 0)

 il = FLAM_EOF;

 else

 { rc = errno + FLAM_IO;

 closfiles(rc, infile, &flmid);

 }

 while (il == FLAM_NORMAL)

 { reclength = strlen(datrec) - 1;

 /* Output compressed file */

 flmput(&flmid, &rc, &reclength, datrec);

 if (rc != FLAM_NORMAL)

 closfiles(rc, infile, &flmid);

 /* Read original file */

 ptr = fgets(datrec, 2048, infile);

 if (ptr == NULL)

 if (errno == 0)

 il = FLAM_EOF;

 else

 { rc = errno + FLAM_IO;

 closfiles(rc, infile, &flmid);

 }

 }

 /* Exit FLAM */

 flmcls(&flmid, &rc, &cputime, &zunks, &zunkb, &zunkbofl,

 &zks, &zkb, &zkbofl);

 /* Output statistics */

 printf("\nNo. of non-compressed records: %d\n", zunks);

 printf("No. of non-compressed bytes: %d\n", zunkb);

 printf("\nNo. of non-compressed records: %d\n", zks);

 printf("No. of non-compressed bytes: %d\n", zkb);

 if (rc != FLAM_NORMAL)

 closinput(rc, infile);

 /* Close original file */

 rc = fclose(infile);

 return rc;

}

/*

 Close files, exit program

*/

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-13

void closfiles(unsigned long rc, FILE *infile, char **flmid)

{ long il;

 unsigned long cputime; /* CPU time */

 unsigned long zks; /* Record counter */

 unsigned long zkb; /* Byte counter */

 unsigned long zkbofl; /* Byte counter overflow */

 unsigned long zunks; /* Record counter */

 unsigned long zunkb; /* Byte counter */

 unsigned long zunkbofl; /* Byte counter overflow */

 /* Exit FLAM */

 flmcls(flmid, &il, &cputime, &zunks, &zunkb, &zunkbofl,

 &zks, &zkb, &zkbofl);

 /* Output statistics */

 if (il == FLAM_NORMAL)

 { printf("\nNo. of non-compressed records: %d\n", zunks);

 printf("No. of non-compressed bytes: %d\n", zunkb);

 printf("\nNo. of non-compressed records: %d\n", zks);

 printf("No. of non-compressed bytes: %d\n", zkb);

 }

 closinput(rc, infile);

}

/*

Close original file, exit program

*/

void closinput(unsigned long rc, FILE *infile)

{ long il;

 /* Close original file */

 il = fclose(infile);

 put_flmsg(rc);

 exit(rc);

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-14

7.6.2 Decompressing a File

The records of a file which have been decompressed by
FLAM are recalled. The file header, which comprises a
common part and a user-specific part, is read. The names
of the input and output files are entered interactively.

/*

Example: Decompress a file

The file header is read with a common part and a user part

*/

#include <stdio.h>

#include <time.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <fcntl.h>

extern int errno;

extern int sys_nerr;

#include "flamincl.h"

int main()

{ char *flmid; /* Record interface ID */

 char kname[100]; /* Name of compressed file */

 char oname[100]; /* Name of original file */

 char dname[100]; /* Name of decompressed file */

 long flcode; /* FLAM code */

 long modus; /* Compression mode */

 long statis; /* Statistics */

 long opmode; /* Open mode */

 long blkmode; /* Block mode */

 long header; /* File header */

 long prctrl; /* Feed control character */

 long version; /* FLAM version */

 long reclength; /* Record length */

 long buflength; /* Buffer length */

 long namlen; /* Length of file name */

 long sattrlen; /* Length of system-specific information */

 char sysattr[2048]; /* System-specific information */

 char datrec[2048]; /* Data area */

 char system[2]; /* Operating system */

 long sanz; /* Max. no. of records / block */

 unsigned long maxb; /* Max. buffer size in KB */

 long lstpar; /* Last parameter */

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-15

 /* Compressed file */

 long blksk; /* Block size */

 long recfk; /* Record format */

 long recsk; /* Record size */

 long devk; /* Device */

 long orgak; /* Organization */

 union { char c[4];

 unsigned long i;

 } recdelk; /* Record delimiter */

 long cldispk; /* Close disposition */

 struct kd keydesck; /* Key description */

 /* Decompressed file */

 long devd; /* Device */

 long orgad; /* Organization */

 long blksd; /* Block size */

 long recfd; /* Record format */

 long recsd; /* Record size if fixed */

 union { char c[4];

 unsigned long i;

 } recdeld; /* Record delimiter */

 long cldispd; /* Close disposition */

 struct kd keydescd; /* Key description */

 /* Original file */

 long blkso; /* Block size */

 long recfo; /* Record format */

 long recso; /* Record size */

 long devo; /* Device */

 long orgao; /* Organization */

 union { char c[4];

 unsigned long i;

 } recdelo; /* Record delimiter */

 long cldispo; /* Close disposition */

 struct kd keydesco; /* Key description */

 char exk20[34]; /* Name of exit routine */

 char exd20[34]; /* Name of exit routine */

 long il, ir; /* Integer */

 unsigned long rc; /* Return code */

 unsigned long cputime; /* CPU time */

 unsigned long zks; /* Record counter */

 unsigned long zkb; /* Byte counter */

 unsigned long zkbofl; /* Byte counter overflow */

 unsigned long zunks; /* Record counter */

 unsigned long zunkb; /* Byte counter */

 unsigned long zunkbofl; /* Byte counter overflow */

 FILE *outfile; /* Output file */

 long uattrlen;

 char usrattr[1000];

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-16

 /* Enter file name */

 printf("File name input: ");

 scanf("%s", kname);

 printf("File name output: ");

 scanf("%s", dname);

 /* Initialize FLAM */

 opmode = FLAM_C_OPEN_INPUT; /* Decompress */

 statis = FLAM_C_STATISTIC; /* Statistics */

 lstpar = FLAM_C_MORE_PARAMETER;

 flmopn(&flmid, &rc, &lstpar, &opmode, kname, &statis);

 if (rc != FLAM_NORMAL)

 { put_flmsg(rc);

 exit (rc);

 }

 /* Specifications for compressed file */

 il = 100;

 cldispk = FLAM_C_CLOSE_REWIND; /* Close disposition */

 flmopd(&flmid, &rc, &lstpar, &il, kname, &orgak, &recfk, &recsk,

 recdelk.c, &keydesck, &blksk, &cldispk, &devk);

 if (rc != FLAM_NORMAL)

 { put_flmsg(rc);

 exit (rc);

 }

 /* Compression specifications */

 header = FLAM_C_FILEHEADER; /* Read file header */

 keydesco.keyparts = 0;

 exk20[0] = ' '; /* No exit routine */

 exd20[0] = ' ';

 flmopf(&flmid, &rc, &version, &flcode, &modus, &maxb, &header, &sanz,

 &keydescd, &blkmode, exk20, exd20);

 if (rc != FLAM_NORMAL)

 { put_flmsg(rc);

 exit (rc);

 }

 /* Read file header */

 /* Common information */

 namlen = 100;

 flmghd(&flmid, &rc, &namlen, oname, &orgao, &recfo, &recso,

 recdelo.c, &keydesco, &blkso, &prctrl, system);

 if ((rc != FLAM_NORMAL) && (rc != FLAM_NO_FILEHEADER))

 closflam(rc, &flmid);

 /* VAX/VMS system ? */

 if (rc != FLAM_NO_FILEHEADER)

 {

 /* User-specific information */

 uattrlen = 1000;

 flmguh(&flmid, &rc, &uattrlen, usrattr);

 if ((rc != FLAM_NORMAL) && (rc != FLAM_NO_FILEHEADER))

 closflam(rc, &flmid);

 }

 /* Open decompressed file */

 outfile = fopen(dname, "w");

 if (outfile == NULL)

 exit(1);

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-17

 /* Decompress and write file */

 buflength = 2048;

 flmget(&flmid, &rc, &reclength, datrec, &buflength);

 if (rc != FLAM_NORMAL)

 { if (rc == FLAM_EOF)

 rc = FLAM_NORMAL;

 closfiles(rc, outfile, &flmid);

 }

 il = FLAM_NORMAL;

 while (il == FLAM_NORMAL)

 { datrec[reclength++] = 0x0a;

 datrec[reclength] = 0x00;

 ir = fputs(datrec, outfile);

 if (ir != reclength)

 { rc = FLAM_WRITE_ERR;

 closfiles(rc, outfile, &flmid);

 }

 /* Read decompressed record */

 flmget(&flmid, &rc, &reclength, datrec, &buflength);

 if (rc != FLAM_NORMAL)

 { if (rc == FLAM_EOF)

 il = rc;

 else

 closfiles(rc, outfile, &flmid);

 }

 }

 /* Close decompressed file */

 rc = close(outfile);

 /* Exit FLAM */

 flmcls(&flmid, &rc, &cputime, &zunks, &zunkb, &zunkbofl, &zks,

 &zkb, &zkbofl);

 /* Output statistics */

 printf("\nNo. of non-compressed records: %d\n", zunks);

 printf("No. of non-compressed bytes: %d\n", zunkb);

 printf("\nNo. of compressed records: %d\n", zks);

 printf("No. of compressed bytes: %d\n", zkb);

 put_flmsg(rc);

 return rc;

}

/*

Close decompressed file, exit FLAM

*/

closfiles(unsigned long rc, FILE *outfile, char **flmid)

{ long il;

 /* Close decompressed file */

 il = close(outfile);

 closflam(rc, flmid);

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-18

/*

Exit FLAM, exit program

*/

closflam(unsigned long rc, char **flmid)

{ long il;

 unsigned long cputime; /* CPU time */

 unsigned long zks; /* Record counter */

 unsigned long zkb; /* Byte counter */

 unsigned long zkbofl; /* Byte counter overflow */

 unsigned long zunks; /* Record counter */

 unsigned long zunkb; /* Byte counter */

 unsigned long zunkbofl; /* Byte counter overflow */

 /* Exit FLAM */

 flmcls(flmid, &il, &cputime, &zunks, &zunkb, &zunkbofl,

 &zks, &zkb, &zkbofl);

 /* Output statistics */

 if (il == FLAM_NORMAL)

 { printf("\nNo. of non-compressed records: %d\n", zunks);

 printf("No. of non-compressed bytes: %d\n", zunkb);

 printf("\nNo. of non-compressed records: %d\n", zks);

 printf("No. of non-compressed bytes: %d\n", zkb);

 }

 if (rc == FLAM_NORMAL)

 rc = il;

 /* Convert return */

 put_flmsg(rc);

 exit (rc);

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-19

7.7 User-Defined Input/Output

The examples below describe the interfaces for the user-
defined input and output functions.

The calls, the necessary parameters and the possible
values are specified for each function. Input and output
errors are not shown.

7.7.1 Opening a File

/*

Open a file to read or write (user_io)

*/

#include "flamincl.h"

void usropn(workio, retco, openmode, linkname, fcbtype, recform, recsize,

 blksize, keydesc, device, recdelim, padchar, prcrtl,

 closdisp, access, namelen, filename)

FLAM_PPCHAR workio; /* File ID */

FLAM_PLONG *retco; /* Return code */

FLAM_PLONG *openmode; /* Processing mode */

 /* 0 = input (seq. read)

 1 = output (seq. write)

 2 = inout (read and write with key)

 (existing file)

 3 = outin (write and read with

 key)

 (new file) */

FLAM_PPCHAR linkname; /* Link name / file name */

FLAM_PLONG *fcbtype; /* Organization */

 /* 0, 8, 16, ... = sequential

 1, 9, 17, ... = index-sequential

 2, 10, 18, ... = relative

 3, 11, 19, ... = direct access

 5, 13, 21, ... = library

 6, 14, 22, ... = physical

 negative = use system-specific

 attributes

 (if open = output, sattrlen not equal to 0) */

FLAM_PLONG *recform; /* Record format */

 /* 0, 8, 16, ... = variable

 8 = blocked,

 16 = blocked/spanned

 24 = VFC

 32 = 2 byte size field

 40 = 4 byte ASCII size field

 48 = 4 byte EBCDIC size field

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-20

 1, 9, 17, ... = fixed

 8 = blocked,

 16 = blocked/standard

 2, 10, 18, ... = undefined

 18 = EAF

 3, 11, 19, ... = stream

 negative = use system-specific

 attributes

 (if open = output, sattrlen

 not equal to 0) */

FLAM_PLONG *recsize; /* Record size */

 /* 0 - 32767

 recform v: Max. record size / 0

 recform f: Record size

 recform u: Max. record size / 0

 recform s: Max. record size / 0 */

FLAM_PLONG *blksize; /* Block size */

 /* 0 = unblocked

 1 - 32767

 negative = use system-specific

 attributes

 (if open = output, sattrlen

 not equal to 0) */

PSTRKD *keydesc; /* Key description */

FLAM_PLONG *device; /* Device type */

 /* 0 = hard disk / unknown

 1 = tape

 2 = diskette

 3 = streamer

 7/15/23 = user i/o

 negative = use system-specific

 attributes

 (if open = output, sattrlen

 not equal to 0) */

FLAM_PCHAR recdelim; /* Record delimiter, terminated with '\0'

 If vfc, 1st byte contains header

 length */

FLAM_PCHAR padchar; /* Padding character */

FLAM_PLONG *prcrtl; /* Feed control character */

FLAM_PLONG *closdisp; /* Close disposition */

 /* 0 = rewind

 1 = unload

 2 = retain / leave */

FLAM_PLONG *access; /* Access method */

 /* 0 = logical

 1 = physical (block-oriented)

 2 = mixed (block access with record transfer) */

FLAM_PLONG *namelen; /* Length of file name (expanded name) */

FLAM_PPCHAR filename; /* File name (expanded name) */

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-21

{

*retco = 0;

/*

Open file

*/

.

.

.

ende: ;

return;

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-22

7.7.2 Reading a File

/*

 Read file (user_io)

*/

#include "flamincl.h"

void usrget(workio, retco, reclen, record, buflen)

FLAM_PPCHAR workio; /* File ID */

FLAM_PLONG *retco; /* Return code */

FLAM_PLONG *reclen; /* Record length in bytes */

FLAM_PPCHAR record; /* Record */

FLAM_PLONG *buflen; /* Length of record buffer in bytes */

{

*retco = 0;

/*

 Read record

*/

.

.

.

ende:

return;

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-23

7.7.3 Writing a File

/*

 Write file (user_io)

*/

#include "flamincl.h"

void usrput(workio, retco, reclen, record)

FLAM_PPCHAR workio; /* File ID */

FLAM_PLONG *retco; /* Return code */

FLAM_PLONG *reclen; /* Record length in bytes */

FLAM_PPCHAR record; /* Record */

{

*retco = 0;

/*

 Write record

*/

.

.

.

ende:

return;

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-24

7.7.4 Closing a File

/*

 Close file (user_io)

*/

#include "flamincl.h"

void usrcls(workio, retco)

FLAM_PPCHAR workio; /* File ID */

FLAM_PLONG *retco; /* Return code */

{

*retco = 0;

/*

 Close file

*/

.

.

.

ende:

return;

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-25

7.8 User Exits

7.8.1 Selecting Records of a Particular Type

from a File with exk10 and Compressing
Them

FLAM reads the records in a file and transfers them to
exk10 for processing. The record type (1st character in
the record) is verified by exk10. Records whose type is "1"
are returned to FLAM for compression (returncode=0); all
other records are not processed any further
(returncode=4).

/*

 Select records of a particular type from a file

 with exitk10 and compress them

*/

exk10(functioncode, returncode, record_pointer, record_length, work)

long *functioncode; /* Function code */

long *returncode; /* Return code */

char **record_pointer; /* Record pointer */

long *record_length; /* Record length */

char *work; /* Work area */

{

*returncode = 0;

 /* Call after open or before close */

if ((*functioncode == 0) || (*functioncode == 8))

 return;

if (**record_pointer != '1')

 /* Records whose type is 1 (1st character

 in record) are compressed; all

 other records are skipped */

 *returncode = 4;

return;

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-26

7.8.2 Processing Records in a Compressed File
with exd10

The decompressed records are not written in the
decompressed file, but are transferred by FLAM to exd10
for processing. exd10 processes the records (screen
output shown here) and does not return them for writing
(returncode=4).

/*

 Process records in a compressed file with exitd10.

 The decompressed records are not written in the

 decompressed file.

*/

#include <stdio.h>

exd10(functioncode, returncode, record_pointer, record_length, work)

long *functioncode; /* Function code */

long *returncode; /* Return code */

char **record_pointer; /* Record pointer */

long *record_length; /* Record length */

char *work; /* Work area */

{

*returncode = 0;

if ((*functioncode == 0) || (*functioncode == 8))

 return;

/*

File record processed (shown)

*/

*(*record_pointer + *record_length) = 0x00;

*work = printf("%s\n", *record_pointer);

returncode = 4; / No errors, don't transfer record */

return;

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-27

7.8.3 Swapping Two Bytes with exk20 during
Compression

Two bytes are swapped in each record, to provide
additional protection for the compressed file. If the data
were to be decompressed without swapping the bytes
back again, an error would occur.

The swapped bytes are returned to their original positions
using the same program during the decompression
procedure.

/*

 Example of exitk20 (and exitd20)

 Swap two bytes during compression procedure.

 The swapped bytes are returned to their original

 positions using the same program

 during the decompression procedure.

 The program call then becomes exd20 instead of exk20.

*/

exk20(functioncode, returncode, record_pointer, record_length, work)

long *functioncode; /* Function code */

long *returncode; /* Return code */

char **record_pointer; /* Record pointer */

long *record_length; /* Record length */

char *work; /* Work area */

{

returncode = 0; / No errors, transfer record */

if ((*functioncode == 0) || (*functioncode == 8))

 return;

if (*record_length > 16) /* Swap bytes 16 and 17 */

 { *work = *(*record_pointer + 15);

 *(*record_pointer + 15) = *(*record_pointer + 16);

 *(*record_pointer + 16) = *work;

 };

return;

}

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-28

7.8.4 Swapping Two Bytes with exd20 during
Decompression

The bytes which were swapped with exk20 during the
compression procedure are returned to their original
positions (see section 7.8.3).

The program is the same as for compression with exitk20.

/*

 Example of exitd20

 Swap two bytes during decompression procedure.

 Same program as for compression with exitk20.

*/

exd20(functioncode, returncode, record_pointer, record_length, work)

long *functioncode; /* Function code */

long *returncode; /* Return code */

char **record_pointer; /* Record pointer */

long *record_length; /* Record length */

char *work; /* Work area */

{

returncode = 0; / No errors, transfer record */

if ((*functioncode == 0) || (*functioncode == 8))

 return;

if (*record_length > 16) /* Swap bytes 16 and 17 */

 { *work = *(*record_pointer + 15);

 *(*record_pointer + 15) = *(*record_pointer + 16);

 *(*record_pointer + 16) = *work;

 };

return;

}

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-29

7.8.5 Automatic Key Management Function

When using encryption/decryption, the -kmexit parameter
can be used to make FLAM activate a function that
automatically generates or retrieves the required
passwords. Such a function (as a C language program)
might look like this:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <sys/types.h>

#include <sys/stat.h>

#define KMX_KEY_LENGTH 8

#define KMX_ID_INFO 0xFFFFFFFF

#define KMX_ENCRYPT 1

#define KMX_DECRYPT 0

void samplex1 /**/

(/* To generate a password (fuco = 1), this exit */

 signed long *fuco, /* routine randomly positions into a text file */

 signed long *retco, /* and extracts a string of length 8. It passes */

 unsigned long *parmlen, /* back the string in cryptokey and the blurred */

 unsigned char *param, /* random position in data. */

 unsigned long *datalen, /* To retrieve a password (fuco = 0), the read */

 unsigned char *data, /* position is derived from data and the string */

 unsigned long *ckylen, /* found there is passed back in cryptokey. */

 unsigned char *cryptokey, /* With fuco = -1, only a text line identifying */

 unsigned long *msglen, /* the routine is passed back in message. */

 unsigned char *message /**/

)

{ const char exit_id[] = "Key Management Exit Version 1.0.0";

 const char ffkmx [] = "/flam/ffkmx";

 const char errmsg1[] = "Can't get info on file /flam/ffkmx";

 const char errmsg2[] = "Can't open file /flam/ffkmx";

 const char errmsg3[] = "Positioning in file /flam/ffkmx failed";

 const char errmsg4[] = "Reading file /flam/ffkmx failed";

 const char errmsg5[] = "Function code %d not supported";

 const char errmsg6[] = "File /flam/ffkmx too small";

 unsigned long count1 ;

 unsigned long count2 ;

 unsigned long rnd_nbr ;

 unsigned long read_pos ;

 FILE *khandle ;

 time_t unixtime ;

 struct tm *p_tm ;

 struct stat filestat ;

 msglen = 0; / */

 /* */

 retco = stat(ffkmx, &filestat); / Determine file size */

 if (*retco != 0) /* */

 { strcpy(message, (char*)errmsg1); /* */

 msglen = strlen(message); / */

 return; /* */

 } /* */

 /* */

 if (filestat.st_size < 256) /* Check file's size */

 { strcpy(message, (char*)errmsg6); /* */

 msglen = strlen(message); / */

 return; /* */

 } /* */

 /* */

Chapter 7 Application Examples

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-30

 khandle = fopen(ffkmx, "rb"); /* Open text file */

 if (khandle == NULL) /* */

 { strcpy(message, (char*)errmsg2); /* */

 msglen = strlen(message); / */

 return; /* */

 } /* */

 /* */

 switch (*fuco) /* */

 { case KMX_ENCRYPT : /* For Encryption: */

 time(&unixtime); /* */

 srandom(unixtime % 0x00010001L); /* generate random # */

 read_pos = rnd_nbr /* */

 = random() % filestat.st_size;/* as read position and */

 rnd_nbr ^= 0x55555555L; /* obscure it */

 data[3] = (char)rnd_nbr; /* save modified # */

 rnd_nbr >>= 8; /* */

 data[2] = (char)rnd_nbr; /* */

 rnd_nbr >>= 8; /* */

 data[1] = (char)rnd_nbr; /* */

 rnd_nbr >>= 8; /* */

 data[0] = (char)rnd_nbr; /* */

 datalen = 4; / */

 break; /* */

 /* */

 case KMX_DECRYPT: /* For Decryption */

 rnd_nbr = (unsigned long)data[0]; /* retrieve saved number */

 rnd_nbr <<= 8; /* */

 rnd_nbr += (unsigned long)data[1]; /* */

 rnd_nbr <<= 8; /* */

 rnd_nbr += (unsigned long)data[2]; /* */

 rnd_nbr <<= 8; /* */

 rnd_nbr += (unsigned long)data[3]; /* */

 read_pos = rnd_nbr ^ 0x55555555L; /* undo obscuring */

 /* */

 break; /* */

 /* */

 case KMX_ID_INFO: /* For Info request */

 strcpy(message, (char*)exit_id); /* pass ID_string */

 msglen = strlen(message); / */

 retco = 0; / */

 return; /* */

 /* */

 default : /* For all other codes */

 sprintf(message, errmsg5, *fuco); /* issue error */

 msglen = strlen(message); / */

 retco = -1; / */

 return; /* */

 } /* */

 retco = fseek(khandle, read_pos, SEEK_SET); / Position on read pos. */

 if (*retco != 0) /* */

 { strcpy(message, (char*)errmsg3); /* */

 msglen = strlen(message); / */

 return; /* */

 } /* */

 /* */

 count1 = filestat.st_size - read_pos; /* Check if file wrap */

 if (count1 >= KMX_KEY_LENGTH) /* necessary */

 { *retco = fread(cryptokey, 1, /* if not, read full key */

 KMX_KEY_LENGTH, khandle); /* */

 if (*retco != KMX_KEY_LENGTH) /* */

 { strcpy(message, (char*)errmsg4); /* */

 msglen = strlen(message); / */

 retco = -1; / */

 return; /* */

 } /* */

 retco = 0; / */

 } /* */

Chapter 7 Application Examples

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

7-31

 else /* */

 { *retco = fread(cryptokey, 1, count1, khandle);/* if yes, read first part */

 if (*retco != count1) /* */

 { strcpy(message, (char*)errmsg4); /* */

 msglen = strlen(message); / */

 retco = -1; / */

 return; /* */

 } /* */

 read_pos = 0; /* */

 retco = fseek(khandle, read_pos, SEEK_SET); / reposition on beginning */

 if (*retco != 0) /* (wrap around) */

 { strcpy(message, (char*)errmsg3); /* */

 msglen = strlen(message); / */

 return; /* */

 } /* */

 count2 = KMX_KEY_LENGTH - count1; /* */

 retco = fread(&cryptokey[count1], 1, / then read second part */

 count2, khandle); /* */

 if (*retco != count2) /* */

 { strcpy(message, (char*)errmsg4); /* */

 msglen = strlen(message); / */

 retco = -1; / */

 return; /* */

 } /* */

 } /* */

 cryptokey[KMX_KEY_LENGTH] = '\0'; /* Terminate string */

 ckylen = KMX_KEY_LENGTH; / Set length */

 fclose(khandle); /* Close file */

 return; /* */

} /* */

This function responds to requests passed via the user
exit for automatic key management. For FLAM to be able
to activate it, it must be a member of a shared library
located in the lib-subdirectory of FLAM's installation
directory. Assuming that this library is named libuserex.so,
then, to have this function manage the passwords
automatically, the flam command or the command string
passed to flamup must contain

-kmexit=samplex1(libuserex)

For encryption (compression), a password is then
generated automatically and passed to FLAM along with
the information required to retrieve that password. FLAM
stores this information in a user-specific file header. For
decryption (decompression), FLAM passes this
information back to this function and receives in return the
matching password.

Appendix A Return Codes

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Appendix A:

Return Codes

Appendix A Return Codes

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-3

A. Return Codes

Return code Symbolic name - meaning

 -1 FLAM_FCT_NOT_EXIST

Meaning: Function not available/not allowed/does not
exist (changed by flamup to 999)

 0 FLAM_NORMAL

Meaning: No errors

 1 FLAM_RECORD_SHORTENED

Meaning: Decompressed record shortened (record
interface warning)

 2 FLAM_EOF

Meaning: End of file

 4 FLAM_RECORD_LENGTHENED

Meaning: Decompressed record(s) lengthened

 6 FLAM_NEW_FILE

Meaning: Start of new file

 7 FLAM_NO_PW

Meaning: Password must be specified

 9 FLAM_NO_FILEHEADER

Meaning: No file header

 10 FLAM_NOT_FLAMFILE

Meaning: File is not a FLAMFILE

Return Codes Appendix A

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-4

Return code Symbolic name - meaning

 11 FLAM_FLAMFILE_FORMAT_ERROR

Meaning: FLAMFILE formatting error

 12 FLAM_FLAMFILE_RECORD_SIZE

Meaning: Invalid record size for compressed file

 13 FLAM_FILE_LENGTH

Meaning: FLAMFILE incomplete or damaged

 14 FLAM_CHECKSUM

Meaning: Checksum error

 15 FLAM_RECORD_GR_32KB

Meaning: Original record larger than 32764 bytes

 16 FLAM_RECORD_GR_BUFFER

Meaning: Original record larger than matrix - 4

 17 FLAM_FLAM_VERSION_1

Meaning: FLAM compressed file is Version 1

 20 FLAM_ILLEGAL_FLAM_OPEN

Meaning: Open mode illegal

 22 FLAM_ILLEGAL_COMPRESSION_MODE

Meaning: Compression mode illegal

 25 FLAM_ILLEGAL_RECORD_SIZE

Meaning: Record size illegal

 26 FLAM_ILLEGAL_CHARACTER_SET

Meaning: Character set illegal

Appendix A Return Codes

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-5

Return code Symbolic name - meaning

 29 FLAM_ERR_PW

Meaning: Password wrong or missing

 30 FLAM_FILE_EMPTY

Meaning: Input file empty

 31 FLAM_FILE_NOT_FOUND

Meaning: Input file does not exist

 32 FLAM_OPEN_MODE

Meaning: Invalid open mode

 34 FLAM_RECORD_FORMAT

Meaning: Invalid record format

 35 FLAM_RECORD_SIZE

Meaning: Invalid record size

 39 FLAM_NO_VALID_FILENAME

Meaning: File name not valid

 43 FLAM_ERR_EXIT

Meaning: Abnormal termination by exit routine

 46 FLAM_OPEN_MSGFILE

Meaning: Cannot open message file

 56 FLAM_FILEHEADER_GR_32KB

Meaning: File header of compressed file longer than 32 KB

 57 FLAM_KOMP_LENGTH

Meaning: Compressed file length invalid

Return Codes Appendix A

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-6

Return code Symbolic name - meaning

 60 FLAM_SYNTAX

Meaning: Error in compressed file

 65 FLAM_CONS_RECORD

Meaning: Consistency point invalid

 70 FLAM_NOT_VALID_VERSION

Meaning: FLAM compressed file is not Version 2x

 71 FLAM_FL_CUT

Meaning: Decompressed record cut (flamup error)

 72 FLAM_RECORD_CUT

Meaning: Decompressed record(s) cut (warning from
flamup)

 74 FLAM_CHECK_CHARACTER

Meaning: Check character error

 81 FLAM_PARAMETER/QUALIFIER

Meaning: Unknown parameter/qualifier

 82 FLAM_PARAMETER_VALUE

Meaning: Parameter value invalid

 87 FLAM_NO_INPUT_FILE

Meaning: Input file has no name

 88 FLAM_NO_OUTPUT_FILE

Meaning: Output file has no name

Appendix A Return Codes

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-7

Return code Symbolic name - meaning

 90 FLAM_QUALIFIER_VALUE

Meaning: Qualifier value invalid

 92 FLAM_NO_REPLACING_CHARACTERS

Meaning: Cannot substitute any characters in input file name

 98 FLAM_READ_ERROR

Meaning: Error occurred while reading a record

 99 FLAM_WRITE_ERROR

Meaning: Error occurred while writing a record

 101 FLAM_NOT_ALL_INPUT_FILES

Meaning: Some input files not processed.

 102 FLAM_ANZ_OUTFILE_GR_INFILE

Meaning: Number of output files greater than number of
input files

 103 FLAM_FILE_NOT_DELETED

Meaning: FLAMFILE not deleted

 351 FLAM_SEC_ERR_351

Meaning: SECURITY: Member number not contiguous

 352 FLAM_SEC_ERR_352

Meaning: SECURITY: Member trailer: counters wrong

 354 AES_MEM_MAC

Meaning: AES: Member MACs wrong

 355 AES_FIL_MAC

Meaning: AES: File MACs wrong

Return Codes Appendix A

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-8

 356 AES_CRC_SUFF

Meaning: Bad checksum in compressed data (CRC-Offs)

 357 AES_CRC_5

Meaning: Bad checksum in compressed data (CRC-5)

 401 FLAM_SEQ_OPD

Meaning: Wrong sequence in flmopd call.

 402 FLAM_SEQ_OPF

Meaning: Wrong sequence in flmopf call.

 403 FLAM_SEQ_PHD

Meaning: Wrong sequence in flmphd call.

 404 FLAM_SEQ_GHD

Meaning: Wrong sequence in flmghd call.

 405 FLAM_SEQ_PUH

Meaning: Wrong sequence in flmpuh call.

 406 FLAM_SEQ_GUH

Meaning: Wrong sequence in flmguh call.

 407 FLAM_SEQ_PUT

Meaning: Wrong sequence in flmput call.

 408 FLAM_SEQ_GET

Meaning: Wrong sequence in flmget call.

 409 FLAM_SEQ_POS

Meaning: Wrong sequence in flmpos call.

 410 FLAM_SEQ_FLU

Meaning: Wrong sequence in flmflu call.

Appendix A Return Codes

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-9

 411 FLAM_SEQ_CLS

Meaning: Wrong sequence in flmcls call.

 412 FLAM_SEQ_PWD

Meaning: Wrong sequence in flmpwd call.

 900 FLAM_PARAMETER_QUALIFIER

Meaning: FLAM options invalid (flamup only)

 998 FLAM_INVALID_LICENSE

Meaning: License invalid

 999 FLAM_INVALID_FUNCTION

Meaning: Stipulated call sequence not observed or
request for memory could not be met

Return Codes Appendix A

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

A-10

I/O error flags in the most significant byte of the
return code:

 1
st

 half-byte Flag Affected files

 X'ex' Input file

 X'ax' Output file

 X'fx' FLAMFILE

 X'cx' Parameter file

 X'dx' Message filei

 X'9x' Code table

 X'8x' Default values

 X'7x' Messages

 2

nd
 half-byte Flag Origin of error

 X'x0' FLAM message

 X'xf' I/O function message

Appendix B Code Tables

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

FLAM (UNIX)

User Manual

Appendix B:

Code Tables

Appendix B Code Tables

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

B-3

B. Code tables

If you need to exchange files between systems which use
different character sets, you can ask FLAM to convert your
data to the desired codes automatically by specifying the
parameter translate=code-table. You must make a
translation table available to FLAM in order to do so.

This chapter describes how to generate a code table.

B.1 Structure of code tables

FLAM reads the first 256 bytes of the file you have
specified as a code table. These 256 bytes form a string,
which is used by FLAM as a translation table. The numeric
value of the code for each character of the original data is
taken as an index for the translation table and replaced by
the corresponding table element. The possible value
range of this numeric value is 0 - 255 (decimal), which
corresponds to table positions 1 - 256.

The following code table can be generated, for example,
in order to convert EBCDIC-coded text data to ASCII code
for the decompression procedure:

Example B.1: Contents of a code table

 **********.*(************!**);*

-**********,***?**********:**'*"

*abcdefghi*******jklmnopqr******

stuvwxyz********************

*ABCDEFGHI*******JKLMNOPQR******

STUVWXYZ****0123456789******

Code Tables Appendix B

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

B-4

This table can be used to translate EBCDIC data
containing alphanumeric characters and the following
special characters: . (!) ; - , ? : ' ". All other EBCDIC codes
are converted to the ASCII character *.

The position of each character in the translation table is
derived by adding 1 to the numeric value of its EBCDIC
code. The number 9, for example, corresponds to the
hexadecimal EBCDIC code F9 (decimal 249) and its
position is 250. If, for instance, the German umlaut ü
needed to be added to the table, its EBCDIC code would
have to be determined first. Assuming this code to be
hexadecimal D0 (decimal 208), the ASCII code for * would
have to be replaced by the ASCII code for ü at position
209 (directly in front of the A).

Conversely, the EBCDIC code F9 (hexadecimal) would
have to be entered at position 58 for the number 9 (ASCII
code hexadecimal 39 = decimal 57) in a table for
translating ASCII to EBCDIC.

B.2 Generating code tables

When code tables are generated, it is not normally
possible to enter character codes which correspond to
non-printing ASCII characters using the keyboard. It is
advisable to use the following program, which
incorporates a modified code table (see example in
/usr/lib/flame/ samplest/cr_code.c):

Appendix B Code Tables

FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

B-5

Example B.2: ASCII - EBCDIC translation table

/*

Example:

ASCII - EBCDIC translation table

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

#include <fcntl.h

extern int errno;

extern int sys_nerr;

main()

{

int status;

unsigned long fk;

static char filename[20] = {"code_ae.dat"};

static char ebcdic[256] = {0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f,

 0x16, 0x05, 0x25, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

 0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26,

 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f,

 0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d,

 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61,

 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,

 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f,

 0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,

 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,

 0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6,

 0xe7, 0xe8, 0xe9, 0xbb, 0xbc, 0xbd, 0x6a, 0x6d,

 0x4a, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,

 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,

 0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6,

 0xa7, 0xa8, 0xa9, 0xfb, 0x4f, 0xfd, 0xff, 0x07,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0xff, 0x06, 0x01, 0x00

 };

Code Tables Appendix B

 FLAM V4.1 (UNIX)
Frankenstein-Limes-Access-Method © 2004 by limes datentechnik gmbh

B-6

fk = open(filename, O_CREAT | O_WRONLY | O_TRUNC);

if (fk == -1)

 { perror("Open file");

 exit(1);

 };

status = chmod(filename, S_IWUSR | S_IRUSR| S_IRGRP | S_IROTH);

if (status == -1)

 { perror("chmod");

 exit(1);

 };

status = write(fk, ebcdic, 256);

if (status != 256)

 perror("Write error");

status = close(fk);

exit(0);

}

